refactor(vm): rename BytePatch to Bytecode

This commit is contained in:
5684185+vsariola@users.noreply.github.com 2023-10-18 19:12:34 +03:00
parent ccd283d2ea
commit 87604dd92e
3 changed files with 79 additions and 57 deletions

View File

@ -7,33 +7,55 @@ import (
"github.com/vsariola/sointu"
)
// BytePatch is the compiler Sointu VM bytecode & data (delay times, sample
// offsets) ready to interpret or from which the ASM/WASM code can be generate.
//
// PolyphonyBitmask is a rather peculiar bitmask used by Sointu VM to store the
// information about which voices use which instruments: bit MAXVOICES - n - 1
// corresponds to voice n. If the bit 1, the next voice uses the same
// instrument. If the bit 0, the next voice uses different instrument. For
// example, if first instrument has 3 voices, second instrument has 2 voices,
// and third instrument four voices, the PolyphonyBitmask is:
//
// (MSB) 110101110 (LSB)
type BytePatch struct {
Commands []byte
Values []byte
DelayTimes []uint16
SampleOffsets []SampleOffset
PolyphonyBitmask uint32
NumVoices uint32
}
type (
// Bytecode is the Sointu VM bytecode & data (delay times, sample offsets)
// which is executed by the synthesizer. It is generated from a Sointu patch.
Bytecode struct {
// Commands is the bytecode, which is a sequence of opcode bytes, one
// per unit in the patch. A byte of 0 denotes the end of an instrument,
// at which point if that instrument has more than one voice, the
// commands are repeated for each voice.
Commands []byte
type SampleOffset struct {
Start uint32
LoopStart uint16
LoopLength uint16
}
// Values are the operands of the opcodes. Every opcode reads 0 or more
// values from the value sequence.
Values []byte
type bytePatchBuilder struct {
// DelayTimes is a table of delay times in samples. The delay times are
// used by the delay units in the patch. The delay unit only stores
// index and count of delay lines, and the delay times are looked up
// from this table. This way multiple reverb units do not have to repeat
// the same delay times.
DelayTimes []uint16
// SampleOffsets is a table of sample offsets, which tell where to find
// a particular sample in the sample data loaded from gm.dls. The sample
// offsets are used by the oscillator units that are configured to use
// samples. The unit only stores the index pointing to this table.
SampleOffsets []SampleOffset
// PolyphonyBitmask is a rather peculiar bitmask used by Sointu VM to store
// the information about which voices use which instruments: bit MAXVOICES -
// n - 1 corresponds to voice n. If the bit 1, the next voice uses the same
// instrument. If the bit 0, the next voice uses different instrument. For
// example, if first instrument has 3 voices, second instrument has 2
// voices, and third instrument four voices, the PolyphonyBitmask is: (MSB)
// 110101110 (LSB)
PolyphonyBitmask uint32
// NumVoices is the total number of voices in the patch
NumVoices uint32
}
// SampleOffset is an entry in the sample offset table
SampleOffset struct {
Start uint32 // start offset in words (1 word = 2 bytes)
LoopStart uint16 // loop start offset in words, relative to Start
LoopLength uint16 // loop length in words
}
)
type bytecodeBuilder struct {
sampleOffsetMap map[SampleOffset]int
globalAddrs map[int]uint16
globalFixups map[int]([]int)
@ -42,14 +64,14 @@ type bytePatchBuilder struct {
voiceNo int
delayIndices [][]int
unitNo int
BytePatch
Bytecode
}
func Encode(patch sointu.Patch, featureSet FeatureSet, bpm int) (*BytePatch, error) {
func Encode(patch sointu.Patch, featureSet FeatureSet, bpm int) (*Bytecode, error) {
if patch.NumVoices() > 32 {
return nil, fmt.Errorf("Sointu does not support more than 32 concurrent voices; patch uses %v", patch.NumVoices())
}
b := newBytePatchBuilder(patch, bpm)
b := newBytecodeBuilder(patch, bpm)
for instrIndex, instr := range patch {
if instr.NumVoices < 1 {
return nil, errors.New("Each instrument must have at least 1 voice")
@ -186,10 +208,10 @@ func Encode(patch sointu.Patch, featureSet FeatureSet, bpm int) (*BytePatch, err
}
b.cmdFinish(instr)
}
return &b.BytePatch, nil
return &b.Bytecode, nil
}
func newBytePatchBuilder(patch sointu.Patch, bpm int) *bytePatchBuilder {
func newBytecodeBuilder(patch sointu.Patch, bpm int) *bytecodeBuilder {
var polyphonyBitmask uint32 = 0
for _, instr := range patch {
for j := 0; j < instr.NumVoices-1; j++ {
@ -202,8 +224,8 @@ func newBytePatchBuilder(patch sointu.Patch, bpm int) *bytePatchBuilder {
for i, d := range delayTimesInt {
delayTimesU16[i] = uint16(d)
}
c := bytePatchBuilder{
BytePatch: BytePatch{PolyphonyBitmask: polyphonyBitmask, NumVoices: uint32(patch.NumVoices()), DelayTimes: delayTimesU16},
c := bytecodeBuilder{
Bytecode: Bytecode{PolyphonyBitmask: polyphonyBitmask, NumVoices: uint32(patch.NumVoices()), DelayTimes: delayTimesU16},
sampleOffsetMap: map[SampleOffset]int{},
globalAddrs: map[int]uint16{},
globalFixups: map[int]([]int){},
@ -214,14 +236,14 @@ func newBytePatchBuilder(patch sointu.Patch, bpm int) *bytePatchBuilder {
}
// cmd adds a command to the bytecode, and increments the unit number
func (b *bytePatchBuilder) cmd(opcode int) {
func (b *bytecodeBuilder) cmd(opcode int) {
b.Commands = append(b.Commands, byte(opcode))
b.unitNo++
}
// cmdFinish adds a command to the bytecode that marks the end of an instrument, resets the unit number and increments the voice number
// local addresses are forgotten when instrument ends
func (b *bytePatchBuilder) cmdFinish(instr sointu.Instrument) {
func (b *bytecodeBuilder) cmdFinish(instr sointu.Instrument) {
b.Commands = append(b.Commands, 0)
b.unitNo = 0
b.voiceNo += instr.NumVoices
@ -230,14 +252,14 @@ func (b *bytePatchBuilder) cmdFinish(instr sointu.Instrument) {
}
// vals appends values to the value stream
func (b *bytePatchBuilder) vals(values ...int) {
func (b *bytecodeBuilder) vals(values ...int) {
for _, v := range values {
b.Values = append(b.Values, byte(v))
}
}
// defaultVals appends the values to the value stream for all parameters that can be modulated and set
func (b *bytePatchBuilder) defaultVals(unit sointu.Unit) {
func (b *bytecodeBuilder) defaultVals(unit sointu.Unit) {
for _, v := range sointu.UnitTypes[unit.Type] {
if v.CanModulate && v.CanSet {
b.Values = append(b.Values, byte(unit.Parameters[v.Name]))
@ -246,7 +268,7 @@ func (b *bytePatchBuilder) defaultVals(unit sointu.Unit) {
}
// localIDRef adds a reference to a local id label to the value stream; if the targeted ID has not been seen yet, it is added to the fixup list
func (b *bytePatchBuilder) localIDRef(id int, addr int) {
func (b *bytecodeBuilder) localIDRef(id int, addr int) {
if v, ok := b.localAddrs[id]; ok {
addr += int(v)
} else {
@ -256,7 +278,7 @@ func (b *bytePatchBuilder) localIDRef(id int, addr int) {
}
// globalIDRef adds a reference to a global id label to the value stream; if the targeted ID has not been seen yet, it is added to the fixup list
func (b *bytePatchBuilder) globalIDRef(id int, addr int) {
func (b *bytecodeBuilder) globalIDRef(id int, addr int) {
if v, ok := b.globalAddrs[id]; ok {
addr += int(v)
} else {
@ -266,7 +288,7 @@ func (b *bytePatchBuilder) globalIDRef(id int, addr int) {
}
// idLabel adds a label to the value stream for the given id; all earlier references to the id are fixed up
func (b *bytePatchBuilder) idLabel(id int) {
func (b *bytecodeBuilder) idLabel(id int) {
localAddr := uint16((b.unitNo + 1) << 4)
b.fixUp(b.localFixups[id], localAddr)
b.localFixups[id] = nil
@ -278,7 +300,7 @@ func (b *bytePatchBuilder) idLabel(id int) {
}
// fixUp fixes up the references to the given id with the given delta
func (b *bytePatchBuilder) fixUp(positions []int, delta uint16) {
func (b *bytecodeBuilder) fixUp(positions []int, delta uint16) {
for _, pos := range positions {
orig := (uint16(b.Values[pos+1]) << 8) + uint16(b.Values[pos])
new := orig + delta
@ -288,7 +310,7 @@ func (b *bytePatchBuilder) fixUp(positions []int, delta uint16) {
}
// getSampleIndex returns the index of the sample in the sample offset table; if the sample has not been seen yet, it is added to the table
func (b *bytePatchBuilder) getSampleIndex(unit sointu.Unit) int {
func (b *bytecodeBuilder) getSampleIndex(unit sointu.Unit) int {
s := SampleOffset{Start: uint32(unit.Parameters["samplestart"]), LoopStart: uint16(unit.Parameters["loopstart"]), LoopLength: uint16(unit.Parameters["looplength"])}
if s.LoopLength == 0 {
// hacky quick fix: looplength 0 causes div by zero so avoid crashing

View File

@ -108,7 +108,7 @@ func (com *Compiler) Song(song *sointu.Song) (map[string]string, error) {
FeatureSetMacros
X86Macros
SongMacros
*vm.BytePatch
*vm.Bytecode
Patterns [][]byte
Sequences [][]byte
PatternLength int
@ -123,7 +123,7 @@ func (com *Compiler) Song(song *sointu.Song) (map[string]string, error) {
FeatureSetMacros
WasmMacros
SongMacros
*vm.BytePatch
*vm.Bytecode
Patterns [][]byte
Sequences [][]byte
PatternLength int

View File

@ -22,7 +22,7 @@ import (
// number of signals, so be warned that if you compose patches for it, they
// might not work with the x87 implementation, as it has only 8-level stack.
type GoSynth struct {
bytePatch BytePatch
bytecode Bytecode
stack []float32
synth synth
delaylines []delayline
@ -88,11 +88,11 @@ success:
}
func Synth(patch sointu.Patch, bpm int) (sointu.Synth, error) {
bytePatch, err := Encode(patch, AllFeatures{}, bpm)
bytecode, err := Encode(patch, AllFeatures{}, bpm)
if err != nil {
return nil, fmt.Errorf("error compiling %v", err)
}
ret := &GoSynth{bytePatch: *bytePatch, stack: make([]float32, 0, 4), delaylines: make([]delayline, patch.NumDelayLines())}
ret := &GoSynth{bytecode: *bytecode, stack: make([]float32, 0, 4), delaylines: make([]delayline, patch.NumDelayLines())}
ret.synth.randSeed = 1
return ret, nil
}
@ -113,20 +113,20 @@ func (s *GoSynth) Release(voiceIndex int) {
}
func (s *GoSynth) Update(patch sointu.Patch, bpm int) error {
bytePatch, err := Encode(patch, AllFeatures{}, bpm)
bytecode, err := Encode(patch, AllFeatures{}, bpm)
if err != nil {
return fmt.Errorf("error compiling %v", err)
}
needsRefresh := len(bytePatch.Commands) != len(s.bytePatch.Commands)
needsRefresh := len(bytecode.Commands) != len(s.bytecode.Commands)
if !needsRefresh {
for i, c := range bytePatch.Commands {
if s.bytePatch.Commands[i] != c {
for i, c := range bytecode.Commands {
if s.bytecode.Commands[i] != c {
needsRefresh = true
break
}
}
}
s.bytePatch = *bytePatch
s.bytecode = *bytecode
for len(s.delaylines) < patch.NumDelayLines() {
s.delaylines = append(s.delaylines, delayline{})
}
@ -151,11 +151,11 @@ func (s *GoSynth) Render(buffer sointu.AudioBuffer, maxtime int) (samples int, t
stack = append(stack, []float32{0, 0, 0, 0}...)
synth := &s.synth
for time < maxtime && len(buffer) > 0 {
commandInstr := s.bytePatch.Commands
valuesInstr := s.bytePatch.Values
commandInstr := s.bytecode.Commands
valuesInstr := s.bytecode.Values
commands, values := commandInstr, valuesInstr
delaylines := s.delaylines
voicesRemaining := s.bytePatch.NumVoices
voicesRemaining := s.bytecode.NumVoices
voices := s.synth.voices[:]
units := voices[0].units[:]
for voicesRemaining > 0 {
@ -170,7 +170,7 @@ func (s *GoSynth) Render(buffer sointu.AudioBuffer, maxtime int) (samples int, t
voices = voices[1:]
units = voices[0].units[:]
}
if mask := uint32(1) << uint32(voicesRemaining); s.bytePatch.PolyphonyBitmask&mask == mask {
if mask := uint32(1) << uint32(voicesRemaining); s.bytecode.PolyphonyBitmask&mask == mask {
commands, values = commandInstr, valuesInstr
} else {
commandInstr, valuesInstr = commands, values
@ -461,7 +461,7 @@ func (s *GoSynth) Render(buffer sointu.AudioBuffer, maxtime int) (samples int, t
phase := *statevar
phase += params[2]
sampleno := valuesAtTransform[3] // reuse color as the sample number
sampleoffset := s.bytePatch.SampleOffsets[sampleno]
sampleoffset := s.bytecode.SampleOffsets[sampleno]
sampleindex := int(phase*84.28074964676522 + 0.5)
loopstart := int(sampleoffset.LoopStart)
if sampleindex >= loopstart {
@ -531,7 +531,7 @@ func (s *GoSynth) Render(buffer sointu.AudioBuffer, maxtime int) (samples int, t
output := params[1] * signal // dry output
for j := byte(0); j < count; j += 2 {
d, delaylines = &delaylines[0], delaylines[1:]
delay := float32(s.bytePatch.DelayTimes[index]) + unit.ports[4]*32767
delay := float32(s.bytecode.DelayTimes[index]) + unit.ports[4]*32767
if count&1 == 0 {
delay /= float32(math.Exp2(float64(voice.note) * 0.083333333333))
}