mirror of
https://github.com/vsariola/sointu.git
synced 2025-07-18 13:04:25 -04:00
refactor!: rename SynthService to Synther and related types
The -er suffix is more idiomatic for single method interfaces, and the interface is not doing much more than converting the patch to a synth. Names were updated throughout the project to reflect this change. In particular, the "Service" in SynthService was not telling anything helpful.
This commit is contained in:
parent
e4a2ed9f32
commit
0a67129a0c
627
vm/go_synth.go
Normal file
627
vm/go_synth.go
Normal file
@ -0,0 +1,627 @@
|
||||
package vm
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"math"
|
||||
"os"
|
||||
"path/filepath"
|
||||
|
||||
"github.com/vsariola/sointu"
|
||||
)
|
||||
|
||||
//go:generate go run generate/generate.go
|
||||
|
||||
// GoSynth is a pure-Go bytecode interpreter for the Sointu VM bytecode. It
|
||||
// can only simulate bytecode compiled for AllFeatures, as the opcodes hard
|
||||
// coded in it for speed. If you are interested exactly how opcodes / units
|
||||
// work, studying GoSynth.Render is a good place to start.
|
||||
//
|
||||
// Internally, it uses software stack with practically no limitations in the
|
||||
// number of signals, so be warned that if you compose patches for it, they
|
||||
// might not work with the x87 implementation, as it has only 8-level stack.
|
||||
type GoSynth struct {
|
||||
bytePatch BytePatch
|
||||
stack []float32
|
||||
synth synth
|
||||
delaylines []delayline
|
||||
}
|
||||
|
||||
type GoSynther struct {
|
||||
}
|
||||
|
||||
const MAX_VOICES = 32
|
||||
const MAX_UNITS = 63
|
||||
|
||||
type unit struct {
|
||||
state [8]float32
|
||||
ports [8]float32
|
||||
}
|
||||
|
||||
type voice struct {
|
||||
note byte
|
||||
sustain bool
|
||||
units [MAX_UNITS]unit
|
||||
}
|
||||
|
||||
type synth struct {
|
||||
outputs [8]float32
|
||||
randSeed uint32
|
||||
globalTime uint32
|
||||
voices [MAX_VOICES]voice
|
||||
}
|
||||
|
||||
type delayline struct {
|
||||
buffer [65536]float32
|
||||
dampState float32
|
||||
dcIn float32
|
||||
dcFiltState float32
|
||||
}
|
||||
|
||||
const (
|
||||
envStateAttack = iota
|
||||
envStateDecay
|
||||
envStateSustain
|
||||
envStateRelease
|
||||
)
|
||||
|
||||
var su_sample_table [3440660]byte
|
||||
|
||||
func init() {
|
||||
var f *os.File
|
||||
var err error
|
||||
if f, err = os.Open("gm.dls"); err == nil { // try to open from current directory first
|
||||
goto success
|
||||
}
|
||||
if f, err = os.Open(filepath.Join(os.Getenv("SystemRoot"), "system32", "drivers", "gm.dls")); err == nil {
|
||||
goto success
|
||||
}
|
||||
if f, err = os.Open(filepath.Join(os.Getenv("SystemRoot"), "SysWOW64", "drivers", "gm.dls")); err == nil {
|
||||
goto success
|
||||
}
|
||||
return
|
||||
success:
|
||||
defer f.Close()
|
||||
// read file, ignoring errors
|
||||
f.Read(su_sample_table[:])
|
||||
}
|
||||
|
||||
func Synth(patch sointu.Patch, bpm int) (sointu.Synth, error) {
|
||||
bytePatch, err := Encode(patch, AllFeatures{}, bpm)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error compiling %v", err)
|
||||
}
|
||||
ret := &GoSynth{bytePatch: *bytePatch, stack: make([]float32, 0, 4), delaylines: make([]delayline, patch.NumDelayLines())}
|
||||
ret.synth.randSeed = 1
|
||||
return ret, nil
|
||||
}
|
||||
|
||||
func (s GoSynther) Synth(patch sointu.Patch, bpm int) (sointu.Synth, error) {
|
||||
synth, err := Synth(patch, bpm)
|
||||
return synth, err
|
||||
}
|
||||
|
||||
func (s *GoSynth) Trigger(voiceIndex int, note byte) {
|
||||
s.synth.voices[voiceIndex] = voice{}
|
||||
s.synth.voices[voiceIndex].note = note
|
||||
s.synth.voices[voiceIndex].sustain = true
|
||||
}
|
||||
|
||||
func (s *GoSynth) Release(voiceIndex int) {
|
||||
s.synth.voices[voiceIndex].sustain = false
|
||||
}
|
||||
|
||||
func (s *GoSynth) Update(patch sointu.Patch, bpm int) error {
|
||||
bytePatch, err := Encode(patch, AllFeatures{}, bpm)
|
||||
if err != nil {
|
||||
return fmt.Errorf("error compiling %v", err)
|
||||
}
|
||||
needsRefresh := len(bytePatch.Commands) != len(s.bytePatch.Commands)
|
||||
if !needsRefresh {
|
||||
for i, c := range bytePatch.Commands {
|
||||
if s.bytePatch.Commands[i] != c {
|
||||
needsRefresh = true
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
s.bytePatch = *bytePatch
|
||||
for len(s.delaylines) < patch.NumDelayLines() {
|
||||
s.delaylines = append(s.delaylines, delayline{})
|
||||
}
|
||||
if needsRefresh {
|
||||
for i := range s.synth.voices {
|
||||
for j := range s.synth.voices[i].units {
|
||||
s.synth.voices[i].units[j] = unit{}
|
||||
}
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (s *GoSynth) Render(buffer sointu.AudioBuffer, maxtime int) (samples int, time int, renderError error) {
|
||||
defer func() {
|
||||
if err := recover(); err != nil {
|
||||
renderError = fmt.Errorf("render panicced: %v", err)
|
||||
}
|
||||
}()
|
||||
var params [8]float32
|
||||
stack := s.stack[:]
|
||||
stack = append(stack, []float32{0, 0, 0, 0}...)
|
||||
synth := &s.synth
|
||||
for time < maxtime && len(buffer) > 0 {
|
||||
commandInstr := s.bytePatch.Commands
|
||||
valuesInstr := s.bytePatch.Values
|
||||
commands, values := commandInstr, valuesInstr
|
||||
delaylines := s.delaylines
|
||||
voicesRemaining := s.bytePatch.NumVoices
|
||||
voices := s.synth.voices[:]
|
||||
units := voices[0].units[:]
|
||||
for voicesRemaining > 0 {
|
||||
op := commands[0]
|
||||
commands = commands[1:]
|
||||
channels := int((op & 1) + 1)
|
||||
stereo := channels == 2
|
||||
opNoStereo := (op & 0xFE) >> 1
|
||||
if opNoStereo == 0 {
|
||||
voicesRemaining--
|
||||
if voicesRemaining > 0 {
|
||||
voices = voices[1:]
|
||||
units = voices[0].units[:]
|
||||
}
|
||||
if mask := uint32(1) << uint32(voicesRemaining); s.bytePatch.PolyphonyBitmask&mask == mask {
|
||||
commands, values = commandInstr, valuesInstr
|
||||
} else {
|
||||
commandInstr, valuesInstr = commands, values
|
||||
}
|
||||
continue
|
||||
}
|
||||
tcount := transformCounts[opNoStereo-1]
|
||||
if len(values) < tcount {
|
||||
return samples, time, errors.New("value stream ended prematurely")
|
||||
}
|
||||
voice := &voices[0]
|
||||
unit := &units[0]
|
||||
valuesAtTransform := values
|
||||
for i := 0; i < tcount; i++ {
|
||||
params[i] = float32(values[0])/128.0 + unit.ports[i]
|
||||
unit.ports[i] = 0
|
||||
values = values[1:]
|
||||
}
|
||||
l := len(stack)
|
||||
switch opNoStereo {
|
||||
case opAdd:
|
||||
if stereo {
|
||||
stack[l-1] += stack[l-3]
|
||||
stack[l-2] += stack[l-4]
|
||||
} else {
|
||||
stack[l-1] += stack[l-2]
|
||||
}
|
||||
case opAddp:
|
||||
if stereo {
|
||||
stack[l-3] += stack[l-1]
|
||||
stack[l-4] += stack[l-2]
|
||||
stack = stack[:l-2]
|
||||
} else {
|
||||
stack[l-2] += stack[l-1]
|
||||
stack = stack[:l-1]
|
||||
}
|
||||
case opMul:
|
||||
if stereo {
|
||||
stack[l-1] *= stack[l-3]
|
||||
stack[l-2] *= stack[l-4]
|
||||
} else {
|
||||
stack[l-1] *= stack[l-2]
|
||||
}
|
||||
case opMulp:
|
||||
if stereo {
|
||||
stack[l-3] *= stack[l-1]
|
||||
stack[l-4] *= stack[l-2]
|
||||
stack = stack[:l-2]
|
||||
} else {
|
||||
stack[l-2] *= stack[l-1]
|
||||
stack = stack[:l-1]
|
||||
}
|
||||
case opXch:
|
||||
if stereo {
|
||||
stack[l-3], stack[l-1] = stack[l-1], stack[l-3]
|
||||
stack[l-4], stack[l-2] = stack[l-2], stack[l-4]
|
||||
} else {
|
||||
stack[l-2], stack[l-1] = stack[l-1], stack[l-2]
|
||||
}
|
||||
case opPush:
|
||||
if stereo {
|
||||
stack = append(stack, stack[l-2])
|
||||
}
|
||||
stack = append(stack, stack[l-1])
|
||||
case opPop:
|
||||
if stereo {
|
||||
stack = stack[:l-2]
|
||||
} else {
|
||||
stack = stack[:l-1]
|
||||
}
|
||||
case opDistort:
|
||||
amount := params[0]
|
||||
if stereo {
|
||||
stack[l-2] = waveshape(stack[l-2], amount)
|
||||
}
|
||||
stack[l-1] = waveshape(stack[l-1], amount)
|
||||
case opLoadval:
|
||||
val := params[0]*2 - 1
|
||||
if stereo {
|
||||
stack = append(stack, val)
|
||||
}
|
||||
stack = append(stack, val)
|
||||
case opOut:
|
||||
if stereo {
|
||||
synth.outputs[0] += params[0] * stack[l-1]
|
||||
synth.outputs[1] += params[0] * stack[l-2]
|
||||
stack = stack[:l-2]
|
||||
} else {
|
||||
synth.outputs[0] += params[0] * stack[l-1]
|
||||
stack = stack[:l-1]
|
||||
}
|
||||
case opOutaux:
|
||||
if stereo {
|
||||
synth.outputs[0] += params[0] * stack[l-1]
|
||||
synth.outputs[1] += params[0] * stack[l-2]
|
||||
synth.outputs[2] += params[1] * stack[l-1]
|
||||
synth.outputs[3] += params[1] * stack[l-2]
|
||||
stack = stack[:l-2]
|
||||
} else {
|
||||
synth.outputs[0] += params[0] * stack[l-1]
|
||||
synth.outputs[2] += params[1] * stack[l-1]
|
||||
stack = stack[:l-1]
|
||||
}
|
||||
case opAux:
|
||||
var channel byte
|
||||
channel, values = values[0], values[1:]
|
||||
if stereo {
|
||||
synth.outputs[channel+1] += params[0] * stack[l-2]
|
||||
}
|
||||
synth.outputs[channel] += params[0] * stack[l-1]
|
||||
stack = stack[:l-channels]
|
||||
case opSpeed:
|
||||
r := unit.state[0] + float32(math.Exp2(float64(stack[l-1]*2.206896551724138))-1)
|
||||
w := int(r+1.5) - 1
|
||||
unit.state[0] = r - float32(w)
|
||||
time += w
|
||||
stack = stack[:l-1]
|
||||
case opIn:
|
||||
var channel byte
|
||||
channel, values = values[0], values[1:]
|
||||
if stereo {
|
||||
stack = append(stack, synth.outputs[channel+1])
|
||||
synth.outputs[channel+1] = 0
|
||||
}
|
||||
stack = append(stack, synth.outputs[channel])
|
||||
synth.outputs[channel] = 0
|
||||
case opEnvelope:
|
||||
if !voices[0].sustain {
|
||||
unit.state[0] = envStateRelease // set state to release
|
||||
}
|
||||
state := unit.state[0]
|
||||
level := unit.state[1]
|
||||
switch state {
|
||||
case envStateAttack:
|
||||
level += nonLinearMap(params[0])
|
||||
if level >= 1 {
|
||||
level = 1
|
||||
state = envStateDecay
|
||||
}
|
||||
case envStateDecay:
|
||||
level -= nonLinearMap(params[1])
|
||||
if sustain := params[2]; level <= sustain {
|
||||
level = sustain
|
||||
}
|
||||
case envStateRelease:
|
||||
level -= nonLinearMap(params[3])
|
||||
if level <= 0 {
|
||||
level = 0
|
||||
}
|
||||
}
|
||||
unit.state[0] = state
|
||||
unit.state[1] = level
|
||||
output := level * params[4]
|
||||
stack = append(stack, output)
|
||||
if stereo {
|
||||
stack = append(stack, output)
|
||||
}
|
||||
case opNoise:
|
||||
if stereo {
|
||||
value := waveshape(synth.rand(), params[0]) * params[1]
|
||||
stack = append(stack, value)
|
||||
}
|
||||
value := waveshape(synth.rand(), params[0]) * params[1]
|
||||
stack = append(stack, value)
|
||||
case opGain:
|
||||
if stereo {
|
||||
stack[l-2] *= params[0]
|
||||
}
|
||||
stack[l-1] *= params[0]
|
||||
case opInvgain:
|
||||
if stereo {
|
||||
stack[l-2] /= params[0]
|
||||
}
|
||||
stack[l-1] /= params[0]
|
||||
case opClip:
|
||||
if stereo {
|
||||
stack[l-2] = clip(stack[l-2])
|
||||
}
|
||||
stack[l-1] = clip(stack[l-1])
|
||||
case opCrush:
|
||||
if stereo {
|
||||
stack[l-2] = crush(stack[l-2], params[0])
|
||||
}
|
||||
stack[l-1] = crush(stack[l-1], params[0])
|
||||
case opHold:
|
||||
freq2 := params[0] * params[0]
|
||||
for i := 0; i < channels; i++ {
|
||||
phase := unit.state[i] - freq2
|
||||
if phase <= 0 {
|
||||
unit.state[2+i] = stack[l-1-i]
|
||||
phase += 1.0
|
||||
}
|
||||
stack[l-1-i] = unit.state[2+i]
|
||||
unit.state[i] = phase
|
||||
}
|
||||
case opSend:
|
||||
var addrLow, addrHigh byte
|
||||
addrLow, addrHigh, values = values[0], values[1], values[2:]
|
||||
addr := (uint16(addrHigh) << 8) + uint16(addrLow)
|
||||
targetVoice := voice
|
||||
if addr&0x8000 == 0x8000 {
|
||||
addr -= 0x8010
|
||||
targetVoice = &synth.voices[addr>>10]
|
||||
}
|
||||
unitIndex := ((addr & 0x01F0) >> 4) - 1
|
||||
port := addr & 7
|
||||
amount := params[0]*2 - 1
|
||||
for i := 0; i < channels; i++ {
|
||||
targetVoice.units[unitIndex].ports[int(port)+i] += stack[l-1-i] * amount
|
||||
}
|
||||
if addr&0x8 == 0x8 {
|
||||
stack = stack[:l-channels]
|
||||
}
|
||||
case opReceive:
|
||||
if stereo {
|
||||
stack = append(stack, unit.ports[1])
|
||||
unit.ports[1] = 0
|
||||
}
|
||||
stack = append(stack, unit.ports[0])
|
||||
unit.ports[0] = 0
|
||||
case opLoadnote:
|
||||
noteFloat := float32(voice.note)/64 - 1
|
||||
stack = append(stack, noteFloat)
|
||||
if stereo {
|
||||
stack = append(stack, noteFloat)
|
||||
}
|
||||
case opPan:
|
||||
if !stereo {
|
||||
stack = append(stack, stack[l-1])
|
||||
l++
|
||||
}
|
||||
stack[l-2] *= params[0]
|
||||
stack[l-1] *= 1 - params[0]
|
||||
case opFilter:
|
||||
freq2 := params[0] * params[0]
|
||||
res := params[1]
|
||||
var flags byte
|
||||
flags, values = values[0], values[1:]
|
||||
for i := 0; i < channels; i++ {
|
||||
low, band := unit.state[0+i], unit.state[2+i]
|
||||
low += freq2 * band
|
||||
high := stack[l-1-i] - low - res*band
|
||||
band += freq2 * high
|
||||
unit.state[0+i], unit.state[2+i] = low, band
|
||||
var output float32
|
||||
if flags&0x40 == 0x40 {
|
||||
output += low
|
||||
}
|
||||
if flags&0x20 == 0x20 {
|
||||
output += band
|
||||
}
|
||||
if flags&0x10 == 0x10 {
|
||||
output += high
|
||||
}
|
||||
if flags&0x08 == 0x08 {
|
||||
output -= band
|
||||
}
|
||||
if flags&0x04 == 0x04 {
|
||||
output -= high
|
||||
}
|
||||
stack[l-1-i] = output
|
||||
}
|
||||
case opOscillator:
|
||||
var flags byte
|
||||
flags, values = values[0], values[1:]
|
||||
detuneStereo := params[1]*2 - 1
|
||||
unison := flags & 3
|
||||
for i := 0; i < channels; i++ {
|
||||
detune := detuneStereo
|
||||
var output float32
|
||||
for j := byte(0); j <= unison; j++ {
|
||||
statevar := &unit.state[byte(i)+j*2]
|
||||
pitch := float64(64*(params[0]*2-1) + detune)
|
||||
if flags&0x8 == 0 { // if lfo is disable, add note to oscillator transpose
|
||||
pitch += float64(voice.note)
|
||||
}
|
||||
pitch *= 0.083333333333 // from semitones to octaves
|
||||
omega := math.Exp2(pitch)
|
||||
if flags&0x8 == 0 {
|
||||
omega *= 0.000092696138 // scaling coefficient to get middle-C where it should be
|
||||
} else {
|
||||
omega *= 0.000038 // pretty random scaling constant to get LFOs into reasonable range. Historical reasons, goes all the way back to 4klang
|
||||
}
|
||||
omega += float64(unit.ports[6]) // add frequency modulation
|
||||
var amplitude float32
|
||||
*statevar += float32(omega)
|
||||
if flags&0x80 == 0x80 { // if this is a sample oscillator
|
||||
phase := *statevar
|
||||
phase += params[2]
|
||||
sampleno := valuesAtTransform[3] // reuse color as the sample number
|
||||
sampleoffset := s.bytePatch.SampleOffsets[sampleno]
|
||||
sampleindex := int(phase*84.28074964676522 + 0.5)
|
||||
loopstart := int(sampleoffset.LoopStart)
|
||||
if sampleindex >= loopstart {
|
||||
sampleindex -= loopstart
|
||||
sampleindex %= int(sampleoffset.LoopLength)
|
||||
sampleindex += loopstart
|
||||
}
|
||||
sampleindex += int(sampleoffset.Start)
|
||||
amplitude = float32(int16(binary.LittleEndian.Uint16(su_sample_table[sampleindex*2:]))) / 32767.0
|
||||
} else {
|
||||
*statevar -= float32(int(*statevar+1) - 1)
|
||||
phase := *statevar
|
||||
phase += params[2]
|
||||
phase -= float32(int(phase))
|
||||
color := params[3]
|
||||
switch {
|
||||
case flags&0x40 == 0x40: // Sine
|
||||
if phase < color {
|
||||
amplitude = float32(math.Sin(2 * math.Pi * float64(phase/color)))
|
||||
}
|
||||
case flags&0x20 == 0x20: // Trisaw
|
||||
if phase >= color {
|
||||
phase = 1 - phase
|
||||
color = 1 - color
|
||||
}
|
||||
amplitude = phase/color*2 - 1
|
||||
case flags&0x10 == 0x10: // Pulse
|
||||
if phase >= color {
|
||||
amplitude = -1
|
||||
} else {
|
||||
amplitude = 1
|
||||
}
|
||||
case flags&0x4 == 0x4: // Gate
|
||||
maskLow, maskHigh := valuesAtTransform[3], valuesAtTransform[4]
|
||||
gateBits := (int(maskHigh) << 8) + int(maskLow)
|
||||
amplitude = float32((gateBits >> (int(phase*16+.5) & 15)) & 1)
|
||||
g := unit.state[4+i] // warning: still fucks up with unison = 3
|
||||
amplitude += 0.99609375 * (g - amplitude)
|
||||
unit.state[4+i] = amplitude
|
||||
}
|
||||
}
|
||||
if flags&0x4 == 0 {
|
||||
output += waveshape(amplitude, params[4]) * params[5]
|
||||
} else {
|
||||
output += amplitude * params[5]
|
||||
}
|
||||
if j < unison {
|
||||
params[2] += 0.08333333 // 1/12, add small phase shift so all oscillators don't start in phase
|
||||
}
|
||||
detune = -detune * 0.5
|
||||
}
|
||||
stack = append(stack, output)
|
||||
detuneStereo = -detuneStereo
|
||||
}
|
||||
unit.ports[6] = 0
|
||||
case opDelay:
|
||||
pregain2 := params[0] * params[0]
|
||||
damp := params[3]
|
||||
feedback := params[2]
|
||||
var index, count byte
|
||||
index, count, values = values[0], values[1], values[2:]
|
||||
t := uint16(s.synth.globalTime)
|
||||
stackIndex := l - channels
|
||||
for i := 0; i < channels; i++ {
|
||||
var d *delayline
|
||||
signal := stack[stackIndex]
|
||||
output := params[1] * signal // dry output
|
||||
for j := byte(0); j < count; j += 2 {
|
||||
d, delaylines = &delaylines[0], delaylines[1:]
|
||||
delay := float32(s.bytePatch.DelayTimes[index]) + unit.ports[4]*32767
|
||||
if count&1 == 0 {
|
||||
delay /= float32(math.Exp2(float64(voice.note) * 0.083333333333))
|
||||
}
|
||||
delSignal := d.buffer[t-uint16(delay+0.5)]
|
||||
output += delSignal
|
||||
d.dampState = damp*d.dampState + (1-damp)*delSignal
|
||||
d.buffer[t] = feedback*d.dampState + pregain2*signal
|
||||
index++
|
||||
}
|
||||
d.dcFiltState = output + (0.99609375*d.dcFiltState - d.dcIn)
|
||||
d.dcIn = output
|
||||
stack[stackIndex] = d.dcFiltState
|
||||
stackIndex++
|
||||
}
|
||||
unit.ports[4] = 0
|
||||
case opCompressor:
|
||||
signalLevel := stack[l-1] * stack[l-1] // square the signal to get power
|
||||
if stereo {
|
||||
signalLevel += stack[l-2] * stack[l-2]
|
||||
}
|
||||
currentLevel := unit.state[0]
|
||||
paramIndex := 0 // compressor attacking
|
||||
if signalLevel < currentLevel {
|
||||
paramIndex = 1 // compressor releasing
|
||||
}
|
||||
alpha := nonLinearMap(params[paramIndex]) // map attack or release to a smoothing coefficient
|
||||
currentLevel += (signalLevel - currentLevel) * alpha
|
||||
unit.state[0] = currentLevel
|
||||
var gain float32 = 1
|
||||
if threshold2 := params[3] * params[3]; currentLevel > threshold2 {
|
||||
gain = float32(math.Pow(float64(threshold2/currentLevel), float64(params[4]/2)))
|
||||
}
|
||||
gain /= params[2] // apply inverse gain
|
||||
stack = append(stack, gain)
|
||||
if stereo {
|
||||
stack = append(stack, gain)
|
||||
}
|
||||
case opSync:
|
||||
break
|
||||
default:
|
||||
return samples, time, errors.New("invalid / unimplemented opcode")
|
||||
}
|
||||
units = units[1:]
|
||||
}
|
||||
if len(stack) < 4 {
|
||||
return samples, time, errors.New("stack underflow")
|
||||
}
|
||||
if len(stack) > 4 {
|
||||
return samples, time, errors.New("stack not empty")
|
||||
}
|
||||
buffer[0][0], buffer[0][1] = synth.outputs[0], synth.outputs[1]
|
||||
synth.outputs[0] = 0
|
||||
synth.outputs[1] = 0
|
||||
buffer = buffer[1:]
|
||||
samples++
|
||||
time++
|
||||
s.synth.globalTime++
|
||||
}
|
||||
s.stack = stack[:0]
|
||||
return samples, time, nil
|
||||
}
|
||||
|
||||
func (s *synth) rand() float32 {
|
||||
s.randSeed *= 16007
|
||||
return float32(int32(s.randSeed)) / -2147483648.0
|
||||
}
|
||||
|
||||
func nonLinearMap(value float32) float32 {
|
||||
return float32(math.Exp2(float64(-24 * value)))
|
||||
}
|
||||
|
||||
func clip(value float32) float32 {
|
||||
if value < -1 {
|
||||
return -1
|
||||
}
|
||||
if value > 1 {
|
||||
return 1
|
||||
}
|
||||
return value
|
||||
}
|
||||
|
||||
func crush(value, amount float32) float32 {
|
||||
n := nonLinearMap(amount)
|
||||
return float32(math.Round(float64(value/n)) * float64(n))
|
||||
}
|
||||
|
||||
func waveshape(value, amount float32) float32 {
|
||||
absVal := value
|
||||
if absVal < 0 {
|
||||
absVal = -absVal
|
||||
}
|
||||
return value * amount / (1 - amount + (2*amount-1)*absVal)
|
||||
}
|
Reference in New Issue
Block a user