fix type-system, use overload for tranform() and reorder butterfly-fn

This commit is contained in:
orgua 2016-12-15 22:07:35 +01:00
parent 2f703aa6ec
commit daca3f4c06

View File

@ -5,14 +5,12 @@
#include <vector>
template <typename T_Scalar,
typename T_Complex=std::complex<T_Scalar>
>
template <typename scalar_t>
class kissfft
{
public:
typedef T_Scalar scalar_type;
typedef T_Complex cpx_type;
using cpx_t = std::complex<scalar_t>;
kissfft( std::size_t nfft,
bool inverse )
@ -21,9 +19,9 @@ class kissfft
{
// fill twiddle factors
_twiddles.resize(_nfft);
const scalar_type phinc = (_inverse?2:-2)* acos( (scalar_type) -1) / _nfft;
const scalar_t phinc = (_inverse?2:-2)* acos( (scalar_t) -1) / _nfft;
for (std::size_t i=0;i<_nfft;++i)
_twiddles[i] = exp( cpx_type(0,i*phinc) );
_twiddles[i] = exp( cpx_t(0,i*phinc) );
//factorize
//start factoring out 4's, then 2's, then 3,5,7,9,...
@ -43,7 +41,7 @@ class kissfft
_stageRadix.push_back(p);
_stageRemainder.push_back(n);
}while(n>1);
}
};
/// Changes the FFT-length and/or the transform direction.
@ -63,11 +61,11 @@ class kissfft
else if ( inverse != _inverse )
{
// conjugate the twiddle factors.
for ( typename std::vector<cpx_type>::iterator it = _twiddles.begin();
for ( typename std::vector<cpx_t>::iterator it = _twiddles.begin();
it != _twiddles.end(); ++it )
it->imag( -it->imag() );
}
}
};
/// Calculates the complex Discrete Fourier Transform.
///
@ -81,11 +79,40 @@ class kissfft
/// constructor. Hence when applying the same transform twice, but with
/// the inverse flag changed the second time, then the result will
/// be equal to the original input times @c N.
void transform( const cpx_type * src,
cpx_type * dst ) const
void transform(const cpx_t * fft_in, cpx_t * fft_out, std::size_t stage = 0, std::size_t fstride = 1, std::size_t in_stride = 1) const
{
kf_work(0, dst, src, 1,1);
}
const std::size_t p = _stageRadix[stage];
const std::size_t m = _stageRemainder[stage];
cpx_t * const Fout_beg = fft_out;
cpx_t * const Fout_end = fft_out + p*m;
if (m==1) {
do{
*fft_out = *fft_in;
fft_in += fstride*in_stride;
}while(++fft_out != Fout_end );
}else{
do{
// recursive call:
// DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
// each one takes a decimated version of the input
transform(fft_in, fft_out, stage+1, fstride*p,in_stride);
fft_in += fstride*in_stride;
}while( (fft_out += m) != Fout_end );
}
fft_out=Fout_beg;
// recombine the p smaller DFTs
switch (p) {
case 2: kf_bfly2(fft_out,fstride,m); break;
case 3: kf_bfly3(fft_out,fstride,m); break;
case 4: kf_bfly4(fft_out,fstride,m); break;
case 5: kf_bfly5(fft_out,fstride,m); break;
default: kf_bfly_generic(fft_out,fstride,m,p); break;
}
};
/// Calculates the Discrete Fourier Transform (DFT) of a real input
/// of size @c 2*N.
@ -101,48 +128,48 @@ class kissfft
/// @endcode
/// The same scaling factors as in @c transform() apply.
///
/// @note For this to work, the types @c scalar_type and @c cpx_type
/// @note For this to work, the types @c scalar_t and @c cpx_t
/// must fulfill the following requirements:
///
/// For any object @c z of type @c cpx_type,
/// @c reinterpret_cast<scalar_type(&)[2]>(z)[0] is the real part of @c z and
/// @c reinterpret_cast<scalar_type(&)[2]>(z)[1] is the imaginary part of @c z.
/// For any pointer to an element of an array of @c cpx_type named @c p
/// For any object @c z of type @c cpx_t,
/// @c reinterpret_cast<scalar_t(&)[2]>(z)[0] is the real part of @c z and
/// @c reinterpret_cast<scalar_t(&)[2]>(z)[1] is the imaginary part of @c z.
/// For any pointer to an element of an array of @c cpx_t named @c p
/// and any valid array index @c i, @c reinterpret_cast<T*>(p)[2*i]
/// is the real part of the complex number @c p[i], and
/// @c reinterpret_cast<T*>(p)[2*i+1] is the imaginary part of the
/// complex number @c p[i].
///
/// Since C++11, these requirements are guaranteed to be satisfied for
/// @c scalar_types being @c float, @c double or @c long @c double
/// together with @c cpx_type being @c std::complex<scalar_type>.
void transform_real( const scalar_type * src,
cpx_type * dst ) const
/// @c scalar_ts being @c float, @c double or @c long @c double
/// together with @c cpx_t being @c std::complex<scalar_t>.
void transform_real( const scalar_t * src,
cpx_t * dst ) const
{
const std::size_t N = _nfft;
if ( N == 0 )
return;
// perform complex FFT
transform( reinterpret_cast<const cpx_type*>(src), dst );
transform( reinterpret_cast<const cpx_t*>(src), dst );
// post processing for k = 0 and k = N
dst[0] = cpx_type( dst[0].real() + dst[0].imag(),
dst[0] = cpx_t( dst[0].real() + dst[0].imag(),
dst[0].real() - dst[0].imag() );
// post processing for all the other k = 1, 2, ..., N-1
const scalar_type pi = acos( (scalar_type) -1);
const scalar_type half_phi_inc = ( _inverse ? pi : -pi ) / N;
const cpx_type twiddle_mul = exp( cpx_type(0, half_phi_inc) );
const scalar_t pi = acos( (scalar_t) -1);
const scalar_t half_phi_inc = ( _inverse ? pi : -pi ) / N;
const cpx_t twiddle_mul = exp( cpx_t(0, half_phi_inc) );
for ( std::size_t k = 1; 2*k < N; ++k )
{
const cpx_type w = (scalar_type)0.5 * cpx_type(
const cpx_t w = (scalar_t)0.5 * cpx_t(
dst[k].real() + dst[N-k].real(),
dst[k].imag() - dst[N-k].imag() );
const cpx_type z = (scalar_type)0.5 * cpx_type(
const cpx_t z = (scalar_t)0.5 * cpx_t(
dst[k].imag() + dst[N-k].imag(),
-dst[k].real() + dst[N-k].real() );
const cpx_type twiddle =
const cpx_t twiddle =
k % 2 == 0 ?
_twiddles[k/2] :
_twiddles[k/2] * twiddle_mul;
@ -151,87 +178,26 @@ class kissfft
}
if ( N % 2 == 0 )
dst[N/2] = conj( dst[N/2] );
}
};
private:
void kf_work( std::size_t stage,
cpx_type * Fout,
const cpx_type * f,
std::size_t fstride,
std::size_t in_stride) const
{
const std::size_t p = _stageRadix[stage];
const std::size_t m = _stageRemainder[stage];
cpx_type * const Fout_beg = Fout;
cpx_type * const Fout_end = Fout + p*m;
if (m==1) {
do{
*Fout = *f;
f += fstride*in_stride;
}while(++Fout != Fout_end );
}else{
do{
// recursive call:
// DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
// each one takes a decimated version of the input
kf_work(stage+1, Fout , f, fstride*p,in_stride);
f += fstride*in_stride;
}while( (Fout += m) != Fout_end );
}
Fout=Fout_beg;
// recombine the p smaller DFTs
switch (p) {
case 2: kf_bfly2(Fout,fstride,m); break;
case 3: kf_bfly3(Fout,fstride,m); break;
case 4: kf_bfly4(Fout,fstride,m); break;
case 5: kf_bfly5(Fout,fstride,m); break;
default: kf_bfly_generic(Fout,fstride,m,p); break;
}
}
void kf_bfly2( cpx_type * Fout, const size_t fstride, std::size_t m) const
void kf_bfly2( cpx_t * Fout, const size_t fstride, std::size_t m) const
{
for (std::size_t k=0;k<m;++k) {
const cpx_type t = Fout[m+k] * _twiddles[k*fstride];
const cpx_t t = Fout[m+k] * _twiddles[k*fstride];
Fout[m+k] = Fout[k] - t;
Fout[k] += t;
}
}
};
void kf_bfly4( cpx_type * Fout, const std::size_t fstride, const std::size_t m) const
{
cpx_type scratch[7];
const scalar_type negative_if_inverse = _inverse ? -1 : +1;
for (std::size_t k=0;k<m;++k) {
scratch[0] = Fout[k+ m] * _twiddles[k*fstride ];
scratch[1] = Fout[k+2*m] * _twiddles[k*fstride*2];
scratch[2] = Fout[k+3*m] * _twiddles[k*fstride*3];
scratch[5] = Fout[k] - scratch[1];
Fout[k] += scratch[1];
scratch[3] = scratch[0] + scratch[2];
scratch[4] = scratch[0] - scratch[2];
scratch[4] = cpx_type( scratch[4].imag()*negative_if_inverse ,
-scratch[4].real()*negative_if_inverse );
Fout[k+2*m] = Fout[k] - scratch[3];
Fout[k ]+= scratch[3];
Fout[k+ m] = scratch[5] + scratch[4];
Fout[k+3*m] = scratch[5] - scratch[4];
}
}
void kf_bfly3( cpx_type * Fout, const std::size_t fstride, const std::size_t m) const
void kf_bfly3( cpx_t * Fout, const std::size_t fstride, const std::size_t m) const
{
std::size_t k=m;
const std::size_t m2 = 2*m;
const cpx_type *tw1,*tw2;
cpx_type scratch[5];
const cpx_type epi3 = _twiddles[fstride*m];
const cpx_t *tw1,*tw2;
cpx_t scratch[5];
const cpx_t epi3 = _twiddles[fstride*m];
tw1=tw2=&_twiddles[0];
@ -244,24 +210,47 @@ class kissfft
tw1 += fstride;
tw2 += fstride*2;
Fout[m] = Fout[0] - scratch[3]*scalar_type(0.5);
Fout[m] = Fout[0] - scratch[3]*scalar_t(0.5);
scratch[0] *= epi3.imag();
Fout[0] += scratch[3];
Fout[m2] = cpx_type( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
Fout[m2] = cpx_t( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
Fout[m] += cpx_type( -scratch[0].imag(),scratch[0].real() );
Fout[m] += cpx_t( -scratch[0].imag(),scratch[0].real() );
++Fout;
}while(--k);
}
};
void kf_bfly5( cpx_type * Fout, const std::size_t fstride, const std::size_t m) const
void kf_bfly4( cpx_t * Fout, const std::size_t fstride, const std::size_t m) const
{
cpx_type *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
cpx_type scratch[13];
const cpx_type ya = _twiddles[fstride*m];
const cpx_type yb = _twiddles[fstride*2*m];
cpx_t scratch[7];
const scalar_t negative_if_inverse = _inverse ? -1 : +1;
for (std::size_t k=0;k<m;++k) {
scratch[0] = Fout[k+ m] * _twiddles[k*fstride ];
scratch[1] = Fout[k+2*m] * _twiddles[k*fstride*2];
scratch[2] = Fout[k+3*m] * _twiddles[k*fstride*3];
scratch[5] = Fout[k] - scratch[1];
Fout[k] += scratch[1];
scratch[3] = scratch[0] + scratch[2];
scratch[4] = scratch[0] - scratch[2];
scratch[4] = cpx_t( scratch[4].imag()*negative_if_inverse ,
-scratch[4].real()*negative_if_inverse );
Fout[k+2*m] = Fout[k] - scratch[3];
Fout[k ]+= scratch[3];
Fout[k+ m] = scratch[5] + scratch[4];
Fout[k+3*m] = scratch[5] - scratch[4];
}
};
void kf_bfly5( cpx_t * Fout, const std::size_t fstride, const std::size_t m) const
{
cpx_t *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
cpx_t scratch[13];
const cpx_t ya = _twiddles[fstride*m];
const cpx_t yb = _twiddles[fstride*2*m];
Fout0=Fout;
Fout1=Fout0+m;
@ -285,12 +274,12 @@ class kissfft
*Fout0 += scratch[7];
*Fout0 += scratch[8];
scratch[5] = scratch[0] + cpx_type(
scratch[5] = scratch[0] + cpx_t(
scratch[7].real()*ya.real() + scratch[8].real()*yb.real(),
scratch[7].imag()*ya.real() + scratch[8].imag()*yb.real()
);
scratch[6] = cpx_type(
scratch[6] = cpx_t(
scratch[10].imag()*ya.imag() + scratch[9].imag()*yb.imag(),
-scratch[10].real()*ya.imag() - scratch[9].real()*yb.imag()
);
@ -299,12 +288,12 @@ class kissfft
*Fout4 = scratch[5] + scratch[6];
scratch[11] = scratch[0] +
cpx_type(
cpx_t(
scratch[7].real()*yb.real() + scratch[8].real()*ya.real(),
scratch[7].imag()*yb.real() + scratch[8].imag()*ya.real()
);
scratch[12] = cpx_type(
scratch[12] = cpx_t(
-scratch[10].imag()*yb.imag() + scratch[9].imag()*ya.imag(),
scratch[10].real()*yb.imag() - scratch[9].real()*ya.imag()
);
@ -318,18 +307,18 @@ class kissfft
++Fout3;
++Fout4;
}
}
};
/* perform the butterfly for one stage of a mixed radix FFT */
void kf_bfly_generic(
cpx_type * Fout,
cpx_t * Fout,
const size_t fstride,
std::size_t m,
std::size_t p
) const
{
const cpx_type * twiddles = &_twiddles[0];
cpx_type scratchbuf[p];
const cpx_t * twiddles = &_twiddles[0];
cpx_t scratchbuf[p];
for ( std::size_t u=0; u<m; ++u ) {
std::size_t k = u;
@ -351,12 +340,12 @@ class kissfft
k += m;
}
}
}
};
std::size_t _nfft;
bool _inverse;
std::vector<cpx_type> _twiddles;
std::vector<std::size_t> _stageRadix;
std::vector<std::size_t> _stageRemainder;
std::size_t _nfft;
bool _inverse;
std::vector<cpx_t> _twiddles;
std::vector<std::size_t> _stageRadix;
std::vector<std::size_t> _stageRemainder;
};
#endif