mirror of
https://github.com/mborgerding/kissfft.git
synced 2025-05-27 21:20:27 -04:00
Merge pull request #6 from orgua/master
fix type-system, use overload for tranform() and reorder butterfly-fn
This commit is contained in:
commit
d74fd2adaf
223
kissfft.hh
223
kissfft.hh
@ -5,25 +5,23 @@
|
||||
#include <vector>
|
||||
|
||||
|
||||
template <typename T_Scalar,
|
||||
typename T_Complex=std::complex<T_Scalar>
|
||||
>
|
||||
template <typename scalar_t>
|
||||
class kissfft
|
||||
{
|
||||
public:
|
||||
typedef T_Scalar scalar_type;
|
||||
typedef T_Complex cpx_type;
|
||||
|
||||
kissfft( std::size_t nfft,
|
||||
bool inverse )
|
||||
using cpx_t = std::complex<scalar_t>;
|
||||
|
||||
kissfft( const std::size_t nfft,
|
||||
const bool inverse )
|
||||
:_nfft(nfft)
|
||||
,_inverse(inverse)
|
||||
{
|
||||
// fill twiddle factors
|
||||
_twiddles.resize(_nfft);
|
||||
const scalar_type phinc = (_inverse?2:-2)* acos( (scalar_type) -1) / _nfft;
|
||||
const scalar_t phinc = (_inverse?2:-2)* acos( (scalar_t) -1) / _nfft;
|
||||
for (std::size_t i=0;i<_nfft;++i)
|
||||
_twiddles[i] = exp( cpx_type(0,i*phinc) );
|
||||
_twiddles[i] = exp( cpx_t(0,i*phinc) );
|
||||
|
||||
//factorize
|
||||
//start factoring out 4's, then 2's, then 3,5,7,9,...
|
||||
@ -52,8 +50,8 @@ class kissfft
|
||||
/// had been newly constructed with the passed arguments.
|
||||
/// However, the implementation may be faster than constructing a
|
||||
/// new fft object.
|
||||
void assign( std::size_t nfft,
|
||||
bool inverse )
|
||||
void assign( const std::size_t nfft,
|
||||
const bool inverse )
|
||||
{
|
||||
if ( nfft != _nfft )
|
||||
{
|
||||
@ -63,7 +61,7 @@ class kissfft
|
||||
else if ( inverse != _inverse )
|
||||
{
|
||||
// conjugate the twiddle factors.
|
||||
for ( typename std::vector<cpx_type>::iterator it = _twiddles.begin();
|
||||
for ( typename std::vector<cpx_t>::iterator it = _twiddles.begin();
|
||||
it != _twiddles.end(); ++it )
|
||||
it->imag( -it->imag() );
|
||||
}
|
||||
@ -81,10 +79,39 @@ class kissfft
|
||||
/// constructor. Hence when applying the same transform twice, but with
|
||||
/// the inverse flag changed the second time, then the result will
|
||||
/// be equal to the original input times @c N.
|
||||
void transform( const cpx_type * src,
|
||||
cpx_type * dst ) const
|
||||
void transform(const cpx_t * fft_in, cpx_t * fft_out, const std::size_t stage = 0, const std::size_t fstride = 1, const std::size_t in_stride = 1) const
|
||||
{
|
||||
kf_work(0, dst, src, 1,1);
|
||||
const std::size_t p = _stageRadix[stage];
|
||||
const std::size_t m = _stageRemainder[stage];
|
||||
cpx_t * const Fout_beg = fft_out;
|
||||
cpx_t * const Fout_end = fft_out + p*m;
|
||||
|
||||
if (m==1) {
|
||||
do{
|
||||
*fft_out = *fft_in;
|
||||
fft_in += fstride*in_stride;
|
||||
}while(++fft_out != Fout_end );
|
||||
}else{
|
||||
do{
|
||||
// recursive call:
|
||||
// DFT of size m*p performed by doing
|
||||
// p instances of smaller DFTs of size m,
|
||||
// each one takes a decimated version of the input
|
||||
transform(fft_in, fft_out, stage+1, fstride*p,in_stride);
|
||||
fft_in += fstride*in_stride;
|
||||
}while( (fft_out += m) != Fout_end );
|
||||
}
|
||||
|
||||
fft_out=Fout_beg;
|
||||
|
||||
// recombine the p smaller DFTs
|
||||
switch (p) {
|
||||
case 2: kf_bfly2(fft_out,fstride,m); break;
|
||||
case 3: kf_bfly3(fft_out,fstride,m); break;
|
||||
case 4: kf_bfly4(fft_out,fstride,m); break;
|
||||
case 5: kf_bfly5(fft_out,fstride,m); break;
|
||||
default: kf_bfly_generic(fft_out,fstride,m,p); break;
|
||||
}
|
||||
}
|
||||
|
||||
/// Calculates the Discrete Fourier Transform (DFT) of a real input
|
||||
@ -101,48 +128,48 @@ class kissfft
|
||||
/// @endcode
|
||||
/// The same scaling factors as in @c transform() apply.
|
||||
///
|
||||
/// @note For this to work, the types @c scalar_type and @c cpx_type
|
||||
/// @note For this to work, the types @c scalar_t and @c cpx_t
|
||||
/// must fulfill the following requirements:
|
||||
///
|
||||
/// For any object @c z of type @c cpx_type,
|
||||
/// @c reinterpret_cast<scalar_type(&)[2]>(z)[0] is the real part of @c z and
|
||||
/// @c reinterpret_cast<scalar_type(&)[2]>(z)[1] is the imaginary part of @c z.
|
||||
/// For any pointer to an element of an array of @c cpx_type named @c p
|
||||
/// For any object @c z of type @c cpx_t,
|
||||
/// @c reinterpret_cast<scalar_t(&)[2]>(z)[0] is the real part of @c z and
|
||||
/// @c reinterpret_cast<scalar_t(&)[2]>(z)[1] is the imaginary part of @c z.
|
||||
/// For any pointer to an element of an array of @c cpx_t named @c p
|
||||
/// and any valid array index @c i, @c reinterpret_cast<T*>(p)[2*i]
|
||||
/// is the real part of the complex number @c p[i], and
|
||||
/// @c reinterpret_cast<T*>(p)[2*i+1] is the imaginary part of the
|
||||
/// complex number @c p[i].
|
||||
///
|
||||
/// Since C++11, these requirements are guaranteed to be satisfied for
|
||||
/// @c scalar_types being @c float, @c double or @c long @c double
|
||||
/// together with @c cpx_type being @c std::complex<scalar_type>.
|
||||
void transform_real( const scalar_type * src,
|
||||
cpx_type * dst ) const
|
||||
/// @c scalar_ts being @c float, @c double or @c long @c double
|
||||
/// together with @c cpx_t being @c std::complex<scalar_t>.
|
||||
void transform_real( const scalar_t * const src,
|
||||
cpx_t * const dst ) const
|
||||
{
|
||||
const std::size_t N = _nfft;
|
||||
if ( N == 0 )
|
||||
return;
|
||||
|
||||
// perform complex FFT
|
||||
transform( reinterpret_cast<const cpx_type*>(src), dst );
|
||||
transform( reinterpret_cast<const cpx_t*>(src), dst );
|
||||
|
||||
// post processing for k = 0 and k = N
|
||||
dst[0] = cpx_type( dst[0].real() + dst[0].imag(),
|
||||
dst[0] = cpx_t( dst[0].real() + dst[0].imag(),
|
||||
dst[0].real() - dst[0].imag() );
|
||||
|
||||
// post processing for all the other k = 1, 2, ..., N-1
|
||||
const scalar_type pi = acos( (scalar_type) -1);
|
||||
const scalar_type half_phi_inc = ( _inverse ? pi : -pi ) / N;
|
||||
const cpx_type twiddle_mul = exp( cpx_type(0, half_phi_inc) );
|
||||
const scalar_t pi = acos( (scalar_t) -1);
|
||||
const scalar_t half_phi_inc = ( _inverse ? pi : -pi ) / N;
|
||||
const cpx_t twiddle_mul = exp( cpx_t(0, half_phi_inc) );
|
||||
for ( std::size_t k = 1; 2*k < N; ++k )
|
||||
{
|
||||
const cpx_type w = (scalar_type)0.5 * cpx_type(
|
||||
const cpx_t w = (scalar_t)0.5 * cpx_t(
|
||||
dst[k].real() + dst[N-k].real(),
|
||||
dst[k].imag() - dst[N-k].imag() );
|
||||
const cpx_type z = (scalar_type)0.5 * cpx_type(
|
||||
const cpx_t z = (scalar_t)0.5 * cpx_t(
|
||||
dst[k].imag() + dst[N-k].imag(),
|
||||
-dst[k].real() + dst[N-k].real() );
|
||||
const cpx_type twiddle =
|
||||
const cpx_t twiddle =
|
||||
k % 2 == 0 ?
|
||||
_twiddles[k/2] :
|
||||
_twiddles[k/2] * twiddle_mul;
|
||||
@ -154,84 +181,23 @@ class kissfft
|
||||
}
|
||||
|
||||
private:
|
||||
void kf_work( std::size_t stage,
|
||||
cpx_type * Fout,
|
||||
const cpx_type * f,
|
||||
std::size_t fstride,
|
||||
std::size_t in_stride) const
|
||||
{
|
||||
const std::size_t p = _stageRadix[stage];
|
||||
const std::size_t m = _stageRemainder[stage];
|
||||
cpx_type * const Fout_beg = Fout;
|
||||
cpx_type * const Fout_end = Fout + p*m;
|
||||
|
||||
if (m==1) {
|
||||
do{
|
||||
*Fout = *f;
|
||||
f += fstride*in_stride;
|
||||
}while(++Fout != Fout_end );
|
||||
}else{
|
||||
do{
|
||||
// recursive call:
|
||||
// DFT of size m*p performed by doing
|
||||
// p instances of smaller DFTs of size m,
|
||||
// each one takes a decimated version of the input
|
||||
kf_work(stage+1, Fout , f, fstride*p,in_stride);
|
||||
f += fstride*in_stride;
|
||||
}while( (Fout += m) != Fout_end );
|
||||
}
|
||||
|
||||
Fout=Fout_beg;
|
||||
|
||||
// recombine the p smaller DFTs
|
||||
switch (p) {
|
||||
case 2: kf_bfly2(Fout,fstride,m); break;
|
||||
case 3: kf_bfly3(Fout,fstride,m); break;
|
||||
case 4: kf_bfly4(Fout,fstride,m); break;
|
||||
case 5: kf_bfly5(Fout,fstride,m); break;
|
||||
default: kf_bfly_generic(Fout,fstride,m,p); break;
|
||||
}
|
||||
}
|
||||
|
||||
void kf_bfly2( cpx_type * Fout, const size_t fstride, std::size_t m) const
|
||||
void kf_bfly2( cpx_t * Fout, const size_t fstride, const std::size_t m) const
|
||||
{
|
||||
for (std::size_t k=0;k<m;++k) {
|
||||
const cpx_type t = Fout[m+k] * _twiddles[k*fstride];
|
||||
const cpx_t t = Fout[m+k] * _twiddles[k*fstride];
|
||||
Fout[m+k] = Fout[k] - t;
|
||||
Fout[k] += t;
|
||||
}
|
||||
}
|
||||
|
||||
void kf_bfly4( cpx_type * Fout, const std::size_t fstride, const std::size_t m) const
|
||||
{
|
||||
cpx_type scratch[7];
|
||||
const scalar_type negative_if_inverse = _inverse ? -1 : +1;
|
||||
for (std::size_t k=0;k<m;++k) {
|
||||
scratch[0] = Fout[k+ m] * _twiddles[k*fstride ];
|
||||
scratch[1] = Fout[k+2*m] * _twiddles[k*fstride*2];
|
||||
scratch[2] = Fout[k+3*m] * _twiddles[k*fstride*3];
|
||||
scratch[5] = Fout[k] - scratch[1];
|
||||
|
||||
Fout[k] += scratch[1];
|
||||
scratch[3] = scratch[0] + scratch[2];
|
||||
scratch[4] = scratch[0] - scratch[2];
|
||||
scratch[4] = cpx_type( scratch[4].imag()*negative_if_inverse ,
|
||||
-scratch[4].real()*negative_if_inverse );
|
||||
|
||||
Fout[k+2*m] = Fout[k] - scratch[3];
|
||||
Fout[k ]+= scratch[3];
|
||||
Fout[k+ m] = scratch[5] + scratch[4];
|
||||
Fout[k+3*m] = scratch[5] - scratch[4];
|
||||
}
|
||||
}
|
||||
|
||||
void kf_bfly3( cpx_type * Fout, const std::size_t fstride, const std::size_t m) const
|
||||
void kf_bfly3( cpx_t * Fout, const std::size_t fstride, const std::size_t m) const
|
||||
{
|
||||
std::size_t k=m;
|
||||
const std::size_t m2 = 2*m;
|
||||
const cpx_type *tw1,*tw2;
|
||||
cpx_type scratch[5];
|
||||
const cpx_type epi3 = _twiddles[fstride*m];
|
||||
const cpx_t *tw1,*tw2;
|
||||
cpx_t scratch[5];
|
||||
const cpx_t epi3 = _twiddles[fstride*m];
|
||||
|
||||
tw1=tw2=&_twiddles[0];
|
||||
|
||||
@ -244,24 +210,47 @@ class kissfft
|
||||
tw1 += fstride;
|
||||
tw2 += fstride*2;
|
||||
|
||||
Fout[m] = Fout[0] - scratch[3]*scalar_type(0.5);
|
||||
Fout[m] = Fout[0] - scratch[3]*scalar_t(0.5);
|
||||
scratch[0] *= epi3.imag();
|
||||
|
||||
Fout[0] += scratch[3];
|
||||
|
||||
Fout[m2] = cpx_type( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
|
||||
Fout[m2] = cpx_t( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
|
||||
|
||||
Fout[m] += cpx_type( -scratch[0].imag(),scratch[0].real() );
|
||||
Fout[m] += cpx_t( -scratch[0].imag(),scratch[0].real() );
|
||||
++Fout;
|
||||
}while(--k);
|
||||
}
|
||||
|
||||
void kf_bfly5( cpx_type * Fout, const std::size_t fstride, const std::size_t m) const
|
||||
void kf_bfly4( cpx_t * const Fout, const std::size_t fstride, const std::size_t m) const
|
||||
{
|
||||
cpx_type *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
|
||||
cpx_type scratch[13];
|
||||
const cpx_type ya = _twiddles[fstride*m];
|
||||
const cpx_type yb = _twiddles[fstride*2*m];
|
||||
cpx_t scratch[7];
|
||||
const scalar_t negative_if_inverse = _inverse ? -1 : +1;
|
||||
for (std::size_t k=0;k<m;++k) {
|
||||
scratch[0] = Fout[k+ m] * _twiddles[k*fstride ];
|
||||
scratch[1] = Fout[k+2*m] * _twiddles[k*fstride*2];
|
||||
scratch[2] = Fout[k+3*m] * _twiddles[k*fstride*3];
|
||||
scratch[5] = Fout[k] - scratch[1];
|
||||
|
||||
Fout[k] += scratch[1];
|
||||
scratch[3] = scratch[0] + scratch[2];
|
||||
scratch[4] = scratch[0] - scratch[2];
|
||||
scratch[4] = cpx_t( scratch[4].imag()*negative_if_inverse ,
|
||||
-scratch[4].real()*negative_if_inverse );
|
||||
|
||||
Fout[k+2*m] = Fout[k] - scratch[3];
|
||||
Fout[k ]+= scratch[3];
|
||||
Fout[k+ m] = scratch[5] + scratch[4];
|
||||
Fout[k+3*m] = scratch[5] - scratch[4];
|
||||
}
|
||||
}
|
||||
|
||||
void kf_bfly5( cpx_t * const Fout, const std::size_t fstride, const std::size_t m) const
|
||||
{
|
||||
cpx_t *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
|
||||
cpx_t scratch[13];
|
||||
const cpx_t ya = _twiddles[fstride*m];
|
||||
const cpx_t yb = _twiddles[fstride*2*m];
|
||||
|
||||
Fout0=Fout;
|
||||
Fout1=Fout0+m;
|
||||
@ -285,12 +274,12 @@ class kissfft
|
||||
*Fout0 += scratch[7];
|
||||
*Fout0 += scratch[8];
|
||||
|
||||
scratch[5] = scratch[0] + cpx_type(
|
||||
scratch[5] = scratch[0] + cpx_t(
|
||||
scratch[7].real()*ya.real() + scratch[8].real()*yb.real(),
|
||||
scratch[7].imag()*ya.real() + scratch[8].imag()*yb.real()
|
||||
);
|
||||
|
||||
scratch[6] = cpx_type(
|
||||
scratch[6] = cpx_t(
|
||||
scratch[10].imag()*ya.imag() + scratch[9].imag()*yb.imag(),
|
||||
-scratch[10].real()*ya.imag() - scratch[9].real()*yb.imag()
|
||||
);
|
||||
@ -299,12 +288,12 @@ class kissfft
|
||||
*Fout4 = scratch[5] + scratch[6];
|
||||
|
||||
scratch[11] = scratch[0] +
|
||||
cpx_type(
|
||||
cpx_t(
|
||||
scratch[7].real()*yb.real() + scratch[8].real()*ya.real(),
|
||||
scratch[7].imag()*yb.real() + scratch[8].imag()*ya.real()
|
||||
);
|
||||
|
||||
scratch[12] = cpx_type(
|
||||
scratch[12] = cpx_t(
|
||||
-scratch[10].imag()*yb.imag() + scratch[9].imag()*ya.imag(),
|
||||
scratch[10].real()*yb.imag() - scratch[9].real()*ya.imag()
|
||||
);
|
||||
@ -322,14 +311,14 @@ class kissfft
|
||||
|
||||
/* perform the butterfly for one stage of a mixed radix FFT */
|
||||
void kf_bfly_generic(
|
||||
cpx_type * Fout,
|
||||
cpx_t * const Fout,
|
||||
const size_t fstride,
|
||||
std::size_t m,
|
||||
std::size_t p
|
||||
const std::size_t m,
|
||||
const std::size_t p
|
||||
) const
|
||||
{
|
||||
const cpx_type * twiddles = &_twiddles[0];
|
||||
cpx_type scratchbuf[p];
|
||||
const cpx_t * twiddles = &_twiddles[0];
|
||||
cpx_t scratchbuf[p];
|
||||
|
||||
for ( std::size_t u=0; u<m; ++u ) {
|
||||
std::size_t k = u;
|
||||
@ -355,7 +344,7 @@ class kissfft
|
||||
|
||||
std::size_t _nfft;
|
||||
bool _inverse;
|
||||
std::vector<cpx_type> _twiddles;
|
||||
std::vector<cpx_t> _twiddles;
|
||||
std::vector<std::size_t> _stageRadix;
|
||||
std::vector<std::size_t> _stageRemainder;
|
||||
};
|
||||
|
304
kissfft_i32.hh
Normal file
304
kissfft_i32.hh
Normal file
@ -0,0 +1,304 @@
|
||||
#ifndef KISSFFT_I32_CLASS_HH
|
||||
#define KISSFFT_I32_CLASS_HH
|
||||
|
||||
#include <complex>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
// TODO1: substitute complex<type> (behaviour not defined for nonfloats), should be faster
|
||||
// TODO2: use std:: namespace
|
||||
// TODO3: make unittests for all ffts (c, cpp, i32)
|
||||
|
||||
template <typename DType>
|
||||
struct complex_s
|
||||
{
|
||||
DType real;
|
||||
DType imag;
|
||||
};
|
||||
|
||||
class kissfft_i32
|
||||
{
|
||||
private:
|
||||
|
||||
using scalar_type = int32_t;
|
||||
using cpx_type = complex<int32_t>;
|
||||
|
||||
scalar_type _scale_factor;
|
||||
std::size_t _nfft;
|
||||
bool _inverse;
|
||||
std::vector<cpx_type> _twiddles;
|
||||
std::vector<std::size_t> _stageRadix;
|
||||
std::vector<std::size_t> _stageRemainder;
|
||||
|
||||
public:
|
||||
|
||||
// scale_factor: upscale twiddle-factors otherwise they lie between 0..1 (out of range for integer) --> fixed point math
|
||||
kissfft_i32(const std::size_t nfft, const bool inverse, const double scale_factor = 1024.0)
|
||||
: _scale_factor(scalar_type(scale_factor)), _nfft(nfft), _inverse(inverse)
|
||||
{
|
||||
// fill twiddle factors
|
||||
_twiddles.resize(_nfft);
|
||||
const double phinc = (_inverse ? 2 : -2) * acos(-1.0) / _nfft;
|
||||
for (std::size_t i = 0; i < _nfft; ++i)
|
||||
{
|
||||
_twiddles[i] = scale_factor * exp(complex<double>(0, i * phinc));
|
||||
}
|
||||
//factorize
|
||||
//start factoring out 4's, then 2's, then 3,5,7,9,...
|
||||
std::size_t n = _nfft;
|
||||
std::size_t p = 4;
|
||||
do
|
||||
{
|
||||
while (n % p)
|
||||
{
|
||||
switch (p)
|
||||
{
|
||||
case 4:
|
||||
p = 2;
|
||||
break;
|
||||
case 2:
|
||||
p = 3;
|
||||
break;
|
||||
default:
|
||||
p += 2;
|
||||
break;
|
||||
}
|
||||
if (p * p > n) p = n;// no more factors
|
||||
}
|
||||
n /= p;
|
||||
_stageRadix.push_back(p);
|
||||
_stageRemainder.push_back(n);
|
||||
} while (n > 1);
|
||||
}
|
||||
|
||||
/// Calculates the complex Discrete Fourier Transform.
|
||||
///
|
||||
/// The size of the passed arrays must be passed in the constructor.
|
||||
/// The sum of the squares of the absolute values in the @c dst
|
||||
/// array will be @c N times the sum of the squares of the absolute
|
||||
/// values in the @c src array, where @c N is the size of the array.
|
||||
/// In other words, the l_2 norm of the resulting array will be
|
||||
/// @c sqrt(N) times as big as the l_2 norm of the input array.
|
||||
/// This is also the case when the inverse flag is set in the
|
||||
/// constructor. Hence when applying the same transform twice, but with
|
||||
/// the inverse flag changed the second time, then the result will
|
||||
/// be equal to the original input times @c N.
|
||||
void transform(const cpx_type * FSrc,
|
||||
cpx_type * FDst,
|
||||
const std::size_t stage = 0,
|
||||
const std::size_t fstride = 1,
|
||||
const std::size_t in_stride = 1) const
|
||||
{
|
||||
const std::size_t p = _stageRadix[stage];
|
||||
const std::size_t m = _stageRemainder[stage];
|
||||
cpx_type *const Fout_beg = FDst;
|
||||
cpx_type *const Fout_end = FDst + p * m;
|
||||
|
||||
if (m == 1)
|
||||
{
|
||||
do
|
||||
{
|
||||
*FDst = *FSrc;
|
||||
FSrc += fstride * in_stride;
|
||||
} while (++FDst != Fout_end);
|
||||
}
|
||||
else
|
||||
{
|
||||
do
|
||||
{
|
||||
// recursive call:
|
||||
// DFT of size m*p performed by doing
|
||||
// p instances of smaller DFTs of size m,
|
||||
// each one takes a decimated version of the input
|
||||
transform(FSrc, FDst, stage + 1, fstride * p, in_stride);
|
||||
FSrc += fstride * in_stride;
|
||||
} while ((FDst += m) != Fout_end);
|
||||
}
|
||||
|
||||
FDst = Fout_beg;
|
||||
|
||||
// recombine the p smaller DFTs
|
||||
switch (p)
|
||||
{
|
||||
case 2:
|
||||
kf_bfly2(FDst, fstride, m);
|
||||
break;
|
||||
case 3:
|
||||
kf_bfly3(FDst, fstride, m);
|
||||
break;
|
||||
case 4:
|
||||
kf_bfly4(FDst, fstride, m);
|
||||
break;
|
||||
case 5:
|
||||
kf_bfly5(FDst, fstride, m);
|
||||
break;
|
||||
default:
|
||||
kf_bfly_generic(FDst, fstride, m, p);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
void kf_bfly2(cpx_type *const Fout, const size_t fstride, const std::size_t m) const
|
||||
{
|
||||
for (std::size_t k = 0; k < m; ++k)
|
||||
{
|
||||
const cpx_type t = (Fout[m + k] * _twiddles[k * fstride]) / _scale_factor;
|
||||
Fout[m + k] = Fout[k] - t;
|
||||
Fout[k] += t;
|
||||
}
|
||||
}
|
||||
|
||||
void kf_bfly3(cpx_type *Fout, const std::size_t fstride, const std::size_t m) const
|
||||
{
|
||||
std::size_t k = m;
|
||||
const std::size_t m2 = 2 * m;
|
||||
const cpx_type *tw1, *tw2;
|
||||
cpx_type scratch[5];
|
||||
const cpx_type epi3 = _twiddles[fstride * m];
|
||||
|
||||
tw1 = tw2 = &_twiddles[0];
|
||||
|
||||
do
|
||||
{
|
||||
scratch[1] = (Fout[m] * *tw1) / _scale_factor;
|
||||
scratch[2] = (Fout[m2] * *tw2) / _scale_factor;
|
||||
|
||||
scratch[3] = scratch[1] + scratch[2];
|
||||
scratch[0] = scratch[1] - scratch[2];
|
||||
tw1 += fstride;
|
||||
tw2 += fstride * 2;
|
||||
|
||||
Fout[m] = Fout[0] - (scratch[3] / 2);
|
||||
scratch[0] *= epi3.imag();
|
||||
scratch[0] /= _scale_factor;
|
||||
|
||||
Fout[0] += scratch[3];
|
||||
|
||||
Fout[m2] = cpx_type(Fout[m].real() + scratch[0].imag(), Fout[m].imag() - scratch[0].real());
|
||||
|
||||
Fout[m] += cpx_type(-scratch[0].imag(), scratch[0].real());
|
||||
++Fout;
|
||||
} while (--k);
|
||||
}
|
||||
|
||||
void kf_bfly4(cpx_type *const Fout, const std::size_t fstride, const std::size_t m) const
|
||||
{
|
||||
cpx_type scratch[7];
|
||||
const scalar_type negative_if_inverse = _inverse ? -1 : +1;
|
||||
|
||||
for (std::size_t k = 0; k < m; ++k)
|
||||
{
|
||||
scratch[0] = (Fout[k + m] * _twiddles[k * fstride]) / _scale_factor;
|
||||
scratch[1] = (Fout[k + 2 * m] * _twiddles[k * fstride * 2]) / _scale_factor;
|
||||
scratch[2] = (Fout[k + 3 * m] * _twiddles[k * fstride * 3]) / _scale_factor;
|
||||
scratch[5] = Fout[k] - scratch[1];
|
||||
|
||||
Fout[k] += scratch[1];
|
||||
scratch[3] = scratch[0] + scratch[2];
|
||||
scratch[4] = scratch[0] - scratch[2];
|
||||
scratch[4] = cpx_type(scratch[4].imag() * negative_if_inverse,
|
||||
-scratch[4].real() * negative_if_inverse);
|
||||
|
||||
Fout[k + 2 * m] = Fout[k] - scratch[3];
|
||||
Fout[k] += scratch[3];
|
||||
Fout[k + m] = scratch[5] + scratch[4];
|
||||
Fout[k + 3 * m] = scratch[5] - scratch[4];
|
||||
}
|
||||
}
|
||||
|
||||
void kf_bfly5(cpx_type *const Fout, const std::size_t fstride, const std::size_t m) const
|
||||
{
|
||||
cpx_type *Fout0, *Fout1, *Fout2, *Fout3, *Fout4;
|
||||
cpx_type scratch[13];
|
||||
const cpx_type ya = _twiddles[fstride * m];
|
||||
const cpx_type yb = _twiddles[fstride * 2 * m];
|
||||
|
||||
Fout0 = Fout;
|
||||
Fout1 = Fout0 + m;
|
||||
Fout2 = Fout0 + 2 * m;
|
||||
Fout3 = Fout0 + 3 * m;
|
||||
Fout4 = Fout0 + 4 * m;
|
||||
|
||||
for (std::size_t u = 0; u < m; ++u)
|
||||
{
|
||||
scratch[0] = *Fout0;
|
||||
|
||||
scratch[1] = (*Fout1 * _twiddles[u * fstride]) / _scale_factor;
|
||||
scratch[2] = (*Fout2 * _twiddles[2 * u * fstride]) / _scale_factor;
|
||||
scratch[3] = (*Fout3 * _twiddles[3 * u * fstride]) / _scale_factor;
|
||||
scratch[4] = (*Fout4 * _twiddles[4 * u * fstride]) / _scale_factor;
|
||||
|
||||
scratch[7] = scratch[1] + scratch[4];
|
||||
scratch[10] = scratch[1] - scratch[4];
|
||||
scratch[8] = scratch[2] + scratch[3];
|
||||
scratch[9] = scratch[2] - scratch[3];
|
||||
|
||||
*Fout0 += scratch[7];
|
||||
*Fout0 += scratch[8];
|
||||
|
||||
scratch[5] = scratch[0] + (cpx_type(
|
||||
scratch[7].real() * ya.real() + scratch[8].real() * yb.real(),
|
||||
scratch[7].imag() * ya.real() + scratch[8].imag() * yb.real() ) / _scale_factor);
|
||||
|
||||
scratch[6] = cpx_type(
|
||||
scratch[10].imag() * ya.imag() + scratch[9].imag() * yb.imag(),
|
||||
-scratch[10].real() * ya.imag() - scratch[9].real() * yb.imag() ) / _scale_factor;
|
||||
|
||||
*Fout1 = scratch[5] - scratch[6];
|
||||
*Fout4 = scratch[5] + scratch[6];
|
||||
|
||||
scratch[11] = scratch[0] + (cpx_type(
|
||||
scratch[7].real() * yb.real() + scratch[8].real() * ya.real(),
|
||||
scratch[7].imag() * yb.real() + scratch[8].imag() * ya.real() ) / _scale_factor);
|
||||
|
||||
scratch[12] = cpx_type(
|
||||
-scratch[10].imag() * yb.imag() + scratch[9].imag() * ya.imag(),
|
||||
scratch[10].real() * yb.imag() - scratch[9].real() * ya.imag() ) / _scale_factor;
|
||||
|
||||
*Fout2 = scratch[11] + scratch[12];
|
||||
*Fout3 = scratch[11] - scratch[12];
|
||||
|
||||
++Fout0;
|
||||
++Fout1;
|
||||
++Fout2;
|
||||
++Fout3;
|
||||
++Fout4;
|
||||
}
|
||||
}
|
||||
|
||||
/* perform the butterfly for one stage of a mixed radix FFT */
|
||||
void kf_bfly_generic(cpx_type * const Fout, const size_t fstride, const std::size_t m, const std::size_t p) const
|
||||
{
|
||||
const cpx_type *twiddles = &_twiddles[0];
|
||||
cpx_type scratchbuf[p];
|
||||
|
||||
for (std::size_t u = 0; u < m; ++u)
|
||||
{
|
||||
std::size_t k = u;
|
||||
for (std::size_t q1 = 0; q1 < p; ++q1)
|
||||
{
|
||||
scratchbuf[q1] = Fout[k];
|
||||
k += m;
|
||||
}
|
||||
|
||||
k = u;
|
||||
for (std::size_t q1 = 0; q1 < p; ++q1)
|
||||
{
|
||||
std::size_t twidx = 0;
|
||||
Fout[k] = scratchbuf[0];
|
||||
for (std::size_t q = 1; q < p; ++q)
|
||||
{
|
||||
twidx += fstride * k;
|
||||
if (twidx >= _nfft)
|
||||
twidx -= _nfft;
|
||||
Fout[k] += (scratchbuf[q] * twiddles[twidx]) / _scale_factor;
|
||||
}
|
||||
k += m;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user