Merge branch 'bazaar' into merge_bazaar

This commit is contained in:
Mark Borgerding 2018-07-21 12:11:33 -04:00
commit 387a365a00
4 changed files with 577 additions and 203 deletions

4
.gitignore vendored Normal file
View File

@ -0,0 +1,4 @@
*.o
*.so
*.a
*.dylib

View File

@ -1,5 +1,19 @@
KFVER=130
ifeq ($(shell uname -s),Darwin)
SHARED := -Wl,-install_name,libkissfft.dylib -o libkissfft.dylib
else
SHARED := -Wl,-soname,libkissfft.so -o libkissfft.so
endif
all:
gcc -Wall -fPIC -c *.c -Dkiss_fft_scalar=float -o kiss_fft.o
ar crus libkissfft.a kiss_fft.o
gcc -shared $(SHARED) kiss_fft.o
install: all
cp libkissfft.so /usr/local/lib/
doc:
@echo "Start by reading the README file. If you want to build and test lots of stuff, do a 'make testall'"
@echo "but be aware that 'make testall' has dependencies that the basic kissfft software does not."

View File

@ -1,201 +1,256 @@
#ifndef KISSFFT_CLASS_HH
#define KISSFFT_CLASS_HH
#include <complex>
#include <utility>
#include <vector>
namespace kissfft_utils {
template <typename T_scalar>
struct traits
{
typedef T_scalar scalar_type;
typedef std::complex<scalar_type> cpx_type;
void fill_twiddles( std::complex<T_scalar> * dst ,int nfft,bool inverse)
{
T_scalar phinc = (inverse?2:-2)* acos( (T_scalar) -1) / nfft;
for (int i=0;i<nfft;++i)
dst[i] = exp( std::complex<T_scalar>(0,i*phinc) );
}
void prepare(
std::vector< std::complex<T_scalar> > & dst,
int nfft,bool inverse,
std::vector<int> & stageRadix,
std::vector<int> & stageRemainder )
{
_twiddles.resize(nfft);
fill_twiddles( &_twiddles[0],nfft,inverse);
dst = _twiddles;
//factorize
//start factoring out 4's, then 2's, then 3,5,7,9,...
int n= nfft;
int p=4;
do {
while (n % p) {
switch (p) {
case 4: p = 2; break;
case 2: p = 3; break;
default: p += 2; break;
}
if (p*p>n)
p=n;// no more factors
}
n /= p;
stageRadix.push_back(p);
stageRemainder.push_back(n);
}while(n>1);
}
std::vector<cpx_type> _twiddles;
const cpx_type twiddle(int i) { return _twiddles[i]; }
};
}
template <typename T_Scalar,
typename T_traits=kissfft_utils::traits<T_Scalar>
>
template <typename scalar_t>
class kissfft
{
public:
typedef T_traits traits_type;
typedef typename traits_type::scalar_type scalar_type;
typedef typename traits_type::cpx_type cpx_type;
kissfft(int nfft,bool inverse,const traits_type & traits=traits_type() )
:_nfft(nfft),_inverse(inverse),_traits(traits)
using cpx_t = std::complex<scalar_t>;
kissfft( const std::size_t nfft,
const bool inverse )
:_nfft(nfft)
,_inverse(inverse)
{
_traits.prepare(_twiddles, _nfft,_inverse ,_stageRadix, _stageRemainder);
// fill twiddle factors
_twiddles.resize(_nfft);
const scalar_t phinc = (_inverse?2:-2)* acos( (scalar_t) -1) / _nfft;
for (std::size_t i=0;i<_nfft;++i)
_twiddles[i] = exp( cpx_t(0,i*phinc) );
//factorize
//start factoring out 4's, then 2's, then 3,5,7,9,...
std::size_t n= _nfft;
std::size_t p=4;
do {
while (n % p) {
switch (p) {
case 4: p = 2; break;
case 2: p = 3; break;
default: p += 2; break;
}
if (p*p>n)
p = n;// no more factors
}
n /= p;
_stageRadix.push_back(p);
_stageRemainder.push_back(n);
}while(n>1);
}
void transform(const cpx_type * src , cpx_type * dst)
/// Changes the FFT-length and/or the transform direction.
///
/// @post The @c kissfft object will be in the same state as if it
/// had been newly constructed with the passed arguments.
/// However, the implementation may be faster than constructing a
/// new fft object.
void assign( const std::size_t nfft,
const bool inverse )
{
kf_work(0, dst, src, 1,1);
if ( nfft != _nfft )
{
kissfft tmp( nfft, inverse ); // O(n) time.
std::swap( tmp, *this ); // this is O(1) in C++11, O(n) otherwise.
}
else if ( inverse != _inverse )
{
// conjugate the twiddle factors.
for ( typename std::vector<cpx_t>::iterator it = _twiddles.begin();
it != _twiddles.end(); ++it )
it->imag( -it->imag() );
}
}
private:
void kf_work( int stage,cpx_type * Fout, const cpx_type * f, size_t fstride,size_t in_stride)
/// Calculates the complex Discrete Fourier Transform.
///
/// The size of the passed arrays must be passed in the constructor.
/// The sum of the squares of the absolute values in the @c dst
/// array will be @c N times the sum of the squares of the absolute
/// values in the @c src array, where @c N is the size of the array.
/// In other words, the l_2 norm of the resulting array will be
/// @c sqrt(N) times as big as the l_2 norm of the input array.
/// This is also the case when the inverse flag is set in the
/// constructor. Hence when applying the same transform twice, but with
/// the inverse flag changed the second time, then the result will
/// be equal to the original input times @c N.
void transform(const cpx_t * fft_in, cpx_t * fft_out, const std::size_t stage = 0, const std::size_t fstride = 1, const std::size_t in_stride = 1) const
{
int p = _stageRadix[stage];
int m = _stageRemainder[stage];
cpx_type * Fout_beg = Fout;
cpx_type * Fout_end = Fout + p*m;
const std::size_t p = _stageRadix[stage];
const std::size_t m = _stageRemainder[stage];
cpx_t * const Fout_beg = fft_out;
cpx_t * const Fout_end = fft_out + p*m;
if (m==1) {
do{
*Fout = *f;
f += fstride*in_stride;
}while(++Fout != Fout_end );
*fft_out = *fft_in;
fft_in += fstride*in_stride;
}while(++fft_out != Fout_end );
}else{
do{
// recursive call:
// DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
// p instances of smaller DFTs of size m,
// each one takes a decimated version of the input
kf_work(stage+1, Fout , f, fstride*p,in_stride);
f += fstride*in_stride;
}while( (Fout += m) != Fout_end );
transform(fft_in, fft_out, stage+1, fstride*p,in_stride);
fft_in += fstride*in_stride;
}while( (fft_out += m) != Fout_end );
}
Fout=Fout_beg;
fft_out=Fout_beg;
// recombine the p smaller DFTs
// recombine the p smaller DFTs
switch (p) {
case 2: kf_bfly2(Fout,fstride,m); break;
case 3: kf_bfly3(Fout,fstride,m); break;
case 4: kf_bfly4(Fout,fstride,m); break;
case 5: kf_bfly5(Fout,fstride,m); break;
default: kf_bfly_generic(Fout,fstride,m,p); break;
case 2: kf_bfly2(fft_out,fstride,m); break;
case 3: kf_bfly3(fft_out,fstride,m); break;
case 4: kf_bfly4(fft_out,fstride,m); break;
case 5: kf_bfly5(fft_out,fstride,m); break;
default: kf_bfly_generic(fft_out,fstride,m,p); break;
}
}
// these were #define macros in the original kiss_fft
void C_ADD( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a+b;}
void C_MUL( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a*b;}
void C_SUB( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a-b;}
void C_ADDTO( cpx_type & c,const cpx_type & a) { c+=a;}
void C_FIXDIV( cpx_type & ,int ) {} // NO-OP for float types
scalar_type S_MUL( const scalar_type & a,const scalar_type & b) { return a*b;}
scalar_type HALF_OF( const scalar_type & a) { return a*.5;}
void C_MULBYSCALAR(cpx_type & c,const scalar_type & a) {c*=a;}
void kf_bfly2( cpx_type * Fout, const size_t fstride, int m)
/// Calculates the Discrete Fourier Transform (DFT) of a real input
/// of size @c 2*N.
///
/// The 0-th and N-th value of the DFT are real numbers. These are
/// stored in @c dst[0].real() and @c dst[1].imag() respectively.
/// The remaining DFT values up to the index N-1 are stored in
/// @c dst[1] to @c dst[N-1].
/// The other half of the DFT values can be calculated from the
/// symmetry relation
/// @code
/// DFT(src)[2*N-k] == conj( DFT(src)[k] );
/// @endcode
/// The same scaling factors as in @c transform() apply.
///
/// @note For this to work, the types @c scalar_t and @c cpx_t
/// must fulfill the following requirements:
///
/// For any object @c z of type @c cpx_t,
/// @c reinterpret_cast<scalar_t(&)[2]>(z)[0] is the real part of @c z and
/// @c reinterpret_cast<scalar_t(&)[2]>(z)[1] is the imaginary part of @c z.
/// For any pointer to an element of an array of @c cpx_t named @c p
/// and any valid array index @c i, @c reinterpret_cast<T*>(p)[2*i]
/// is the real part of the complex number @c p[i], and
/// @c reinterpret_cast<T*>(p)[2*i+1] is the imaginary part of the
/// complex number @c p[i].
///
/// Since C++11, these requirements are guaranteed to be satisfied for
/// @c scalar_ts being @c float, @c double or @c long @c double
/// together with @c cpx_t being @c std::complex<scalar_t>.
void transform_real( const scalar_t * const src,
cpx_t * const dst ) const
{
for (int k=0;k<m;++k) {
cpx_type t = Fout[m+k] * _traits.twiddle(k*fstride);
const std::size_t N = _nfft;
if ( N == 0 )
return;
// perform complex FFT
transform( reinterpret_cast<const cpx_t*>(src), dst );
// post processing for k = 0 and k = N
dst[0] = cpx_t( dst[0].real() + dst[0].imag(),
dst[0].real() - dst[0].imag() );
// post processing for all the other k = 1, 2, ..., N-1
const scalar_t pi = acos( (scalar_t) -1);
const scalar_t half_phi_inc = ( _inverse ? pi : -pi ) / N;
const cpx_t twiddle_mul = exp( cpx_t(0, half_phi_inc) );
for ( std::size_t k = 1; 2*k < N; ++k )
{
const cpx_t w = (scalar_t)0.5 * cpx_t(
dst[k].real() + dst[N-k].real(),
dst[k].imag() - dst[N-k].imag() );
const cpx_t z = (scalar_t)0.5 * cpx_t(
dst[k].imag() + dst[N-k].imag(),
-dst[k].real() + dst[N-k].real() );
const cpx_t twiddle =
k % 2 == 0 ?
_twiddles[k/2] :
_twiddles[k/2] * twiddle_mul;
dst[ k] = w + twiddle * z;
dst[N-k] = conj( w - twiddle * z );
}
if ( N % 2 == 0 )
dst[N/2] = conj( dst[N/2] );
}
private:
void kf_bfly2( cpx_t * Fout, const size_t fstride, const std::size_t m) const
{
for (std::size_t k=0;k<m;++k) {
const cpx_t t = Fout[m+k] * _twiddles[k*fstride];
Fout[m+k] = Fout[k] - t;
Fout[k] += t;
}
}
void kf_bfly4( cpx_type * Fout, const size_t fstride, const size_t m)
void kf_bfly3( cpx_t * Fout, const std::size_t fstride, const std::size_t m) const
{
cpx_type scratch[7];
int negative_if_inverse = _inverse * -2 +1;
for (size_t k=0;k<m;++k) {
scratch[0] = Fout[k+m] * _traits.twiddle(k*fstride);
scratch[1] = Fout[k+2*m] * _traits.twiddle(k*fstride*2);
scratch[2] = Fout[k+3*m] * _traits.twiddle(k*fstride*3);
std::size_t k=m;
const std::size_t m2 = 2*m;
const cpx_t *tw1,*tw2;
cpx_t scratch[5];
const cpx_t epi3 = _twiddles[fstride*m];
tw1=tw2=&_twiddles[0];
do{
scratch[1] = Fout[m] * *tw1;
scratch[2] = Fout[m2] * *tw2;
scratch[3] = scratch[1] + scratch[2];
scratch[0] = scratch[1] - scratch[2];
tw1 += fstride;
tw2 += fstride*2;
Fout[m] = Fout[0] - scratch[3]*scalar_t(0.5);
scratch[0] *= epi3.imag();
Fout[0] += scratch[3];
Fout[m2] = cpx_t( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
Fout[m] += cpx_t( -scratch[0].imag(),scratch[0].real() );
++Fout;
}while(--k);
}
void kf_bfly4( cpx_t * const Fout, const std::size_t fstride, const std::size_t m) const
{
cpx_t scratch[7];
const scalar_t negative_if_inverse = _inverse ? -1 : +1;
for (std::size_t k=0;k<m;++k) {
scratch[0] = Fout[k+ m] * _twiddles[k*fstride ];
scratch[1] = Fout[k+2*m] * _twiddles[k*fstride*2];
scratch[2] = Fout[k+3*m] * _twiddles[k*fstride*3];
scratch[5] = Fout[k] - scratch[1];
Fout[k] += scratch[1];
scratch[3] = scratch[0] + scratch[2];
scratch[4] = scratch[0] - scratch[2];
scratch[4] = cpx_type( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
scratch[4] = cpx_t( scratch[4].imag()*negative_if_inverse ,
-scratch[4].real()*negative_if_inverse );
Fout[k+2*m] = Fout[k] - scratch[3];
Fout[k] += scratch[3];
Fout[k+m] = scratch[5] + scratch[4];
Fout[k ]+= scratch[3];
Fout[k+ m] = scratch[5] + scratch[4];
Fout[k+3*m] = scratch[5] - scratch[4];
}
}
void kf_bfly3( cpx_type * Fout, const size_t fstride, const size_t m)
void kf_bfly5( cpx_t * const Fout, const std::size_t fstride, const std::size_t m) const
{
size_t k=m;
const size_t m2 = 2*m;
cpx_type *tw1,*tw2;
cpx_type scratch[5];
cpx_type epi3;
epi3 = _twiddles[fstride*m];
tw1=tw2=&_twiddles[0];
do{
C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3);
C_MUL(scratch[1],Fout[m] , *tw1);
C_MUL(scratch[2],Fout[m2] , *tw2);
C_ADD(scratch[3],scratch[1],scratch[2]);
C_SUB(scratch[0],scratch[1],scratch[2]);
tw1 += fstride;
tw2 += fstride*2;
Fout[m] = cpx_type( Fout->real() - HALF_OF(scratch[3].real() ) , Fout->imag() - HALF_OF(scratch[3].imag() ) );
C_MULBYSCALAR( scratch[0] , epi3.imag() );
C_ADDTO(*Fout,scratch[3]);
Fout[m2] = cpx_type( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
C_ADDTO( Fout[m] , cpx_type( -scratch[0].imag(),scratch[0].real() ) );
++Fout;
}while(--k);
}
void kf_bfly5( cpx_type * Fout, const size_t fstride, const size_t m)
{
cpx_type *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
size_t u;
cpx_type scratch[13];
cpx_type * twiddles = &_twiddles[0];
cpx_type *tw;
cpx_type ya,yb;
ya = twiddles[fstride*m];
yb = twiddles[fstride*2*m];
cpx_t *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
cpx_t scratch[13];
const cpx_t ya = _twiddles[fstride*m];
const cpx_t yb = _twiddles[fstride*2*m];
Fout0=Fout;
Fout1=Fout0+m;
@ -203,97 +258,94 @@ class kissfft
Fout3=Fout0+3*m;
Fout4=Fout0+4*m;
tw=twiddles;
for ( u=0; u<m; ++u ) {
C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5);
for ( std::size_t u=0; u<m; ++u ) {
scratch[0] = *Fout0;
C_MUL(scratch[1] ,*Fout1, tw[u*fstride]);
C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]);
C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]);
C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]);
scratch[1] = *Fout1 * _twiddles[ u*fstride];
scratch[2] = *Fout2 * _twiddles[2*u*fstride];
scratch[3] = *Fout3 * _twiddles[3*u*fstride];
scratch[4] = *Fout4 * _twiddles[4*u*fstride];
C_ADD( scratch[7],scratch[1],scratch[4]);
C_SUB( scratch[10],scratch[1],scratch[4]);
C_ADD( scratch[8],scratch[2],scratch[3]);
C_SUB( scratch[9],scratch[2],scratch[3]);
scratch[7] = scratch[1] + scratch[4];
scratch[10]= scratch[1] - scratch[4];
scratch[8] = scratch[2] + scratch[3];
scratch[9] = scratch[2] - scratch[3];
C_ADDTO( *Fout0, scratch[7]);
C_ADDTO( *Fout0, scratch[8]);
*Fout0 += scratch[7];
*Fout0 += scratch[8];
scratch[5] = scratch[0] + cpx_type(
S_MUL(scratch[7].real(),ya.real() ) + S_MUL(scratch[8].real() ,yb.real() ),
S_MUL(scratch[7].imag(),ya.real()) + S_MUL(scratch[8].imag(),yb.real())
scratch[5] = scratch[0] + cpx_t(
scratch[7].real()*ya.real() + scratch[8].real()*yb.real(),
scratch[7].imag()*ya.real() + scratch[8].imag()*yb.real()
);
scratch[6] = cpx_type(
S_MUL(scratch[10].imag(),ya.imag()) + S_MUL(scratch[9].imag(),yb.imag()),
-S_MUL(scratch[10].real(),ya.imag()) - S_MUL(scratch[9].real(),yb.imag())
scratch[6] = cpx_t(
scratch[10].imag()*ya.imag() + scratch[9].imag()*yb.imag(),
-scratch[10].real()*ya.imag() - scratch[9].real()*yb.imag()
);
C_SUB(*Fout1,scratch[5],scratch[6]);
C_ADD(*Fout4,scratch[5],scratch[6]);
*Fout1 = scratch[5] - scratch[6];
*Fout4 = scratch[5] + scratch[6];
scratch[11] = scratch[0] +
cpx_type(
S_MUL(scratch[7].real(),yb.real()) + S_MUL(scratch[8].real(),ya.real()),
S_MUL(scratch[7].imag(),yb.real()) + S_MUL(scratch[8].imag(),ya.real())
scratch[11] = scratch[0] +
cpx_t(
scratch[7].real()*yb.real() + scratch[8].real()*ya.real(),
scratch[7].imag()*yb.real() + scratch[8].imag()*ya.real()
);
scratch[12] = cpx_type(
-S_MUL(scratch[10].imag(),yb.imag()) + S_MUL(scratch[9].imag(),ya.imag()),
S_MUL(scratch[10].real(),yb.imag()) - S_MUL(scratch[9].real(),ya.imag())
scratch[12] = cpx_t(
-scratch[10].imag()*yb.imag() + scratch[9].imag()*ya.imag(),
scratch[10].real()*yb.imag() - scratch[9].real()*ya.imag()
);
C_ADD(*Fout2,scratch[11],scratch[12]);
C_SUB(*Fout3,scratch[11],scratch[12]);
*Fout2 = scratch[11] + scratch[12];
*Fout3 = scratch[11] - scratch[12];
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
++Fout0;
++Fout1;
++Fout2;
++Fout3;
++Fout4;
}
}
/* perform the butterfly for one stage of a mixed radix FFT */
void kf_bfly_generic(
cpx_type * Fout,
cpx_t * const Fout,
const size_t fstride,
int m,
int p
)
const std::size_t m,
const std::size_t p
) const
{
int u,k,q1,q;
cpx_type * twiddles = &_twiddles[0];
cpx_type t;
int Norig = _nfft;
cpx_type scratchbuf[p];
const cpx_t * twiddles = &_twiddles[0];
cpx_t scratchbuf[p];
for ( u=0; u<m; ++u ) {
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
for ( std::size_t u=0; u<m; ++u ) {
std::size_t k = u;
for ( std::size_t q1=0 ; q1<p ; ++q1 ) {
scratchbuf[q1] = Fout[ k ];
C_FIXDIV(scratchbuf[q1],p);
k += m;
}
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
int twidx=0;
for ( std::size_t q1=0 ; q1<p ; ++q1 ) {
std::size_t twidx=0;
Fout[ k ] = scratchbuf[0];
for (q=1;q<p;++q ) {
for ( std::size_t q=1;q<p;++q ) {
twidx += fstride * k;
if (twidx>=Norig) twidx-=Norig;
C_MUL(t,scratchbuf[q] , twiddles[twidx] );
C_ADDTO( Fout[ k ] ,t);
if (twidx>=_nfft)
twidx-=_nfft;
Fout[ k ] += scratchbuf[q] * twiddles[twidx];
}
k += m;
}
}
}
int _nfft;
std::size_t _nfft;
bool _inverse;
std::vector<cpx_type> _twiddles;
std::vector<int> _stageRadix;
std::vector<int> _stageRemainder;
traits_type _traits;
std::vector<cpx_t> _twiddles;
std::vector<std::size_t> _stageRadix;
std::vector<std::size_t> _stageRemainder;
};
#endif

304
kissfft_i32.hh Normal file
View File

@ -0,0 +1,304 @@
#ifndef KISSFFT_I32_CLASS_HH
#define KISSFFT_I32_CLASS_HH
#include <complex>
#include <utility>
#include <vector>
// TODO1: substitute complex<type> (behaviour not defined for nonfloats), should be faster
// TODO2: use std:: namespace
// TODO3: make unittests for all ffts (c, cpp, i32)
template <typename DType>
struct complex_s
{
DType real;
DType imag;
};
class kissfft_i32
{
private:
using scalar_type = int32_t;
using cpx_type = complex<int32_t>;
scalar_type _scale_factor;
std::size_t _nfft;
bool _inverse;
std::vector<cpx_type> _twiddles;
std::vector<std::size_t> _stageRadix;
std::vector<std::size_t> _stageRemainder;
public:
// scale_factor: upscale twiddle-factors otherwise they lie between 0..1 (out of range for integer) --> fixed point math
kissfft_i32(const std::size_t nfft, const bool inverse, const double scale_factor = 1024.0)
: _scale_factor(scalar_type(scale_factor)), _nfft(nfft), _inverse(inverse)
{
// fill twiddle factors
_twiddles.resize(_nfft);
const double phinc = (_inverse ? 2 : -2) * acos(-1.0) / _nfft;
for (std::size_t i = 0; i < _nfft; ++i)
{
_twiddles[i] = scale_factor * exp(complex<double>(0, i * phinc));
}
//factorize
//start factoring out 4's, then 2's, then 3,5,7,9,...
std::size_t n = _nfft;
std::size_t p = 4;
do
{
while (n % p)
{
switch (p)
{
case 4:
p = 2;
break;
case 2:
p = 3;
break;
default:
p += 2;
break;
}
if (p * p > n) p = n;// no more factors
}
n /= p;
_stageRadix.push_back(p);
_stageRemainder.push_back(n);
} while (n > 1);
}
/// Calculates the complex Discrete Fourier Transform.
///
/// The size of the passed arrays must be passed in the constructor.
/// The sum of the squares of the absolute values in the @c dst
/// array will be @c N times the sum of the squares of the absolute
/// values in the @c src array, where @c N is the size of the array.
/// In other words, the l_2 norm of the resulting array will be
/// @c sqrt(N) times as big as the l_2 norm of the input array.
/// This is also the case when the inverse flag is set in the
/// constructor. Hence when applying the same transform twice, but with
/// the inverse flag changed the second time, then the result will
/// be equal to the original input times @c N.
void transform(const cpx_type * FSrc,
cpx_type * FDst,
const std::size_t stage = 0,
const std::size_t fstride = 1,
const std::size_t in_stride = 1) const
{
const std::size_t p = _stageRadix[stage];
const std::size_t m = _stageRemainder[stage];
cpx_type *const Fout_beg = FDst;
cpx_type *const Fout_end = FDst + p * m;
if (m == 1)
{
do
{
*FDst = *FSrc;
FSrc += fstride * in_stride;
} while (++FDst != Fout_end);
}
else
{
do
{
// recursive call:
// DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
// each one takes a decimated version of the input
transform(FSrc, FDst, stage + 1, fstride * p, in_stride);
FSrc += fstride * in_stride;
} while ((FDst += m) != Fout_end);
}
FDst = Fout_beg;
// recombine the p smaller DFTs
switch (p)
{
case 2:
kf_bfly2(FDst, fstride, m);
break;
case 3:
kf_bfly3(FDst, fstride, m);
break;
case 4:
kf_bfly4(FDst, fstride, m);
break;
case 5:
kf_bfly5(FDst, fstride, m);
break;
default:
kf_bfly_generic(FDst, fstride, m, p);
break;
}
}
private:
void kf_bfly2(cpx_type *const Fout, const size_t fstride, const std::size_t m) const
{
for (std::size_t k = 0; k < m; ++k)
{
const cpx_type t = (Fout[m + k] * _twiddles[k * fstride]) / _scale_factor;
Fout[m + k] = Fout[k] - t;
Fout[k] += t;
}
}
void kf_bfly3(cpx_type *Fout, const std::size_t fstride, const std::size_t m) const
{
std::size_t k = m;
const std::size_t m2 = 2 * m;
const cpx_type *tw1, *tw2;
cpx_type scratch[5];
const cpx_type epi3 = _twiddles[fstride * m];
tw1 = tw2 = &_twiddles[0];
do
{
scratch[1] = (Fout[m] * *tw1) / _scale_factor;
scratch[2] = (Fout[m2] * *tw2) / _scale_factor;
scratch[3] = scratch[1] + scratch[2];
scratch[0] = scratch[1] - scratch[2];
tw1 += fstride;
tw2 += fstride * 2;
Fout[m] = Fout[0] - (scratch[3] / 2);
scratch[0] *= epi3.imag();
scratch[0] /= _scale_factor;
Fout[0] += scratch[3];
Fout[m2] = cpx_type(Fout[m].real() + scratch[0].imag(), Fout[m].imag() - scratch[0].real());
Fout[m] += cpx_type(-scratch[0].imag(), scratch[0].real());
++Fout;
} while (--k);
}
void kf_bfly4(cpx_type *const Fout, const std::size_t fstride, const std::size_t m) const
{
cpx_type scratch[7];
const scalar_type negative_if_inverse = _inverse ? -1 : +1;
for (std::size_t k = 0; k < m; ++k)
{
scratch[0] = (Fout[k + m] * _twiddles[k * fstride]) / _scale_factor;
scratch[1] = (Fout[k + 2 * m] * _twiddles[k * fstride * 2]) / _scale_factor;
scratch[2] = (Fout[k + 3 * m] * _twiddles[k * fstride * 3]) / _scale_factor;
scratch[5] = Fout[k] - scratch[1];
Fout[k] += scratch[1];
scratch[3] = scratch[0] + scratch[2];
scratch[4] = scratch[0] - scratch[2];
scratch[4] = cpx_type(scratch[4].imag() * negative_if_inverse,
-scratch[4].real() * negative_if_inverse);
Fout[k + 2 * m] = Fout[k] - scratch[3];
Fout[k] += scratch[3];
Fout[k + m] = scratch[5] + scratch[4];
Fout[k + 3 * m] = scratch[5] - scratch[4];
}
}
void kf_bfly5(cpx_type *const Fout, const std::size_t fstride, const std::size_t m) const
{
cpx_type *Fout0, *Fout1, *Fout2, *Fout3, *Fout4;
cpx_type scratch[13];
const cpx_type ya = _twiddles[fstride * m];
const cpx_type yb = _twiddles[fstride * 2 * m];
Fout0 = Fout;
Fout1 = Fout0 + m;
Fout2 = Fout0 + 2 * m;
Fout3 = Fout0 + 3 * m;
Fout4 = Fout0 + 4 * m;
for (std::size_t u = 0; u < m; ++u)
{
scratch[0] = *Fout0;
scratch[1] = (*Fout1 * _twiddles[u * fstride]) / _scale_factor;
scratch[2] = (*Fout2 * _twiddles[2 * u * fstride]) / _scale_factor;
scratch[3] = (*Fout3 * _twiddles[3 * u * fstride]) / _scale_factor;
scratch[4] = (*Fout4 * _twiddles[4 * u * fstride]) / _scale_factor;
scratch[7] = scratch[1] + scratch[4];
scratch[10] = scratch[1] - scratch[4];
scratch[8] = scratch[2] + scratch[3];
scratch[9] = scratch[2] - scratch[3];
*Fout0 += scratch[7];
*Fout0 += scratch[8];
scratch[5] = scratch[0] + (cpx_type(
scratch[7].real() * ya.real() + scratch[8].real() * yb.real(),
scratch[7].imag() * ya.real() + scratch[8].imag() * yb.real() ) / _scale_factor);
scratch[6] = cpx_type(
scratch[10].imag() * ya.imag() + scratch[9].imag() * yb.imag(),
-scratch[10].real() * ya.imag() - scratch[9].real() * yb.imag() ) / _scale_factor;
*Fout1 = scratch[5] - scratch[6];
*Fout4 = scratch[5] + scratch[6];
scratch[11] = scratch[0] + (cpx_type(
scratch[7].real() * yb.real() + scratch[8].real() * ya.real(),
scratch[7].imag() * yb.real() + scratch[8].imag() * ya.real() ) / _scale_factor);
scratch[12] = cpx_type(
-scratch[10].imag() * yb.imag() + scratch[9].imag() * ya.imag(),
scratch[10].real() * yb.imag() - scratch[9].real() * ya.imag() ) / _scale_factor;
*Fout2 = scratch[11] + scratch[12];
*Fout3 = scratch[11] - scratch[12];
++Fout0;
++Fout1;
++Fout2;
++Fout3;
++Fout4;
}
}
/* perform the butterfly for one stage of a mixed radix FFT */
void kf_bfly_generic(cpx_type * const Fout, const size_t fstride, const std::size_t m, const std::size_t p) const
{
const cpx_type *twiddles = &_twiddles[0];
cpx_type scratchbuf[p];
for (std::size_t u = 0; u < m; ++u)
{
std::size_t k = u;
for (std::size_t q1 = 0; q1 < p; ++q1)
{
scratchbuf[q1] = Fout[k];
k += m;
}
k = u;
for (std::size_t q1 = 0; q1 < p; ++q1)
{
std::size_t twidx = 0;
Fout[k] = scratchbuf[0];
for (std::size_t q = 1; q < p; ++q)
{
twidx += fstride * k;
if (twidx >= _nfft)
twidx -= _nfft;
Fout[k] += (scratchbuf[q] * twiddles[twidx]) / _scale_factor;
}
k += m;
}
}
}
};
#endif