739 lines
25 KiB
C++

// generator.hpp
// Copyright (c) 2005-2018 Ben Hanson (http://www.benhanson.net/)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file licence_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef LEXERTL_GENERATOR_HPP
#define LEXERTL_GENERATOR_HPP
#include <algorithm>
#include "partition/charset.hpp"
#include "char_traits.hpp"
#include "partition/equivset.hpp"
#include <list>
#include <memory>
#include "parser/parser.hpp"
#include "rules.hpp"
#include "state_machine.hpp"
#include <type_traits>
namespace lexertl
{
template<typename rules, typename sm, typename char_traits = basic_char_traits
<typename sm::traits::input_char_type> >
class basic_generator
{
public:
using id_type = typename rules::id_type;
using rules_char_type = typename rules::rules_char_type;
using sm_traits = typename sm::traits;
using parser = detail::basic_parser<rules_char_type, sm_traits>;
using charset_map = typename parser::charset_map;
using node = typename parser::node;
using node_ptr_vector = typename parser::node_ptr_vector;
static void build(const rules &rules_, sm &sm_)
{
const std::size_t size_ = rules_.statemap().size();
// Strong exception guarantee
// http://www.boost.org/community/exception_safety.html
internals internals_;
sm temp_sm_;
node_ptr_vector node_ptr_vector_;
internals_._eoi = rules_.eoi();
internals_.add_states(size_);
for (id_type index_ = 0; index_ < size_; ++index_)
{
if (rules_.regexes()[index_].empty())
{
std::ostringstream ss_;
ss_ << "Lexer states with no rules are not allowed "
"(lexer state " << index_ << ".)";
throw runtime_error(ss_.str());
}
else
{
// Note that the following variables are per DFA.
// Map of regex charset tokens (strings) to index
charset_map charset_map_;
// Used to fix up $ and \n clashes.
id_type nl_id_ = sm_traits::npos();
// Regex syntax tree
observer_ptr<node> root_ = build_tree(rules_, index_,
node_ptr_vector_, charset_map_, nl_id_);
build_dfa(charset_map_, root_, internals_, temp_sm_, index_,
nl_id_);
if (internals_._dfa[index_].size() /
internals_._dfa_alphabet[index_] >= sm_traits::npos())
{
// Overflow
throw runtime_error("The data type you have chosen "
"cannot hold this many DFA rows.");
}
}
}
// If you get a compile error here the id_type from rules and
// state machine do no match.
create(internals_, temp_sm_, rules_.features(), lookup());
sm_.swap(temp_sm_);
}
static observer_ptr<node> build_tree(const rules &rules_,
const std::size_t dfa_, node_ptr_vector &node_ptr_vector_,
charset_map &charset_map_, id_type &nl_id_)
{
parser parser_(rules_.locale(), node_ptr_vector_, charset_map_,
rules_.eoi());
const auto &regexes_ = rules_.regexes();
auto regex_iter_ = regexes_[dfa_].cbegin();
auto regex_iter_end_ = regexes_[dfa_].cend();
const auto &ids_ = rules_.ids();
const auto &user_ids_ = rules_.user_ids();
auto id_iter_ = ids_[dfa_].cbegin();
auto user_id_iter_ = user_ids_[dfa_].cbegin();
const auto &next_dfas_ = rules_.next_dfas();
const auto &pushes_ = rules_.pushes();
const auto &pops_ = rules_.pops();
auto next_dfa_iter_ = next_dfas_[dfa_].cbegin();
auto push_dfa_iter_ = pushes_[dfa_].cbegin();
auto pop_dfa_iter_ = pops_[dfa_].cbegin();
const bool seen_bol_ = (rules_.features()[dfa_] & bol_bit) != 0;
observer_ptr<node> root_ = nullptr;
root_ = parser_.parse(*regex_iter_, *id_iter_, *user_id_iter_,
*next_dfa_iter_, *push_dfa_iter_, *pop_dfa_iter_,
rules_.flags(), nl_id_, seen_bol_);
++regex_iter_;
++id_iter_;
++user_id_iter_;
++next_dfa_iter_;
++push_dfa_iter_;
++pop_dfa_iter_;
// Build syntax trees
while (regex_iter_ != regex_iter_end_)
{
observer_ptr<node> rhs_ = parser_.parse(*regex_iter_, *id_iter_,
*user_id_iter_, *next_dfa_iter_, *push_dfa_iter_,
*pop_dfa_iter_, rules_.flags(), nl_id_,
(rules_.features()[dfa_] & bol_bit) != 0);
node_ptr_vector_.emplace_back
(std::make_unique<selection_node>(root_, rhs_));
root_ = node_ptr_vector_.back().get();
++regex_iter_;
++id_iter_;
++user_id_iter_;
++next_dfa_iter_;
++push_dfa_iter_;
++pop_dfa_iter_;
}
return root_;
}
protected:
using compressed = std::integral_constant<bool, sm_traits::compressed>;
using equivset = detail::basic_equivset<id_type>;
using equivset_list = std::list<std::unique_ptr<equivset>>;
using equivset_ptr = std::unique_ptr<equivset>;
using sm_char_type = typename sm_traits::char_type;
using charset = detail::basic_charset<sm_char_type, id_type>;
using charset_ptr = std::unique_ptr<charset>;
using charset_list = std::list<std::unique_ptr<charset>>;
using internals = detail::basic_internals<id_type>;
using id_type_set = typename std::set<id_type>;
using id_type_vector = typename internals::id_type_vector;
using index_set = typename charset::index_set;
using index_set_vector = std::vector<index_set>;
using is_dfa = std::integral_constant<bool, sm_traits::is_dfa>;
using lookup = std::integral_constant<bool, sm_traits::lookup>;
using node_set = std::set<observer_ptr<const node>>;
using node_set_vector = std::vector<std::unique_ptr<node_set>>;
using node_vector = typename node::node_vector;
using node_vector_vector = std::vector<std::unique_ptr<node_vector>>;
using selection_node = typename parser::selection_node;
using size_t_vector = typename std::vector<std::size_t>;
using string_token = typename parser::string_token;
static void build_dfa(const charset_map &charset_map_,
const observer_ptr<node> root_, internals &internals_, sm &sm_,
const id_type dfa_index_, id_type &nl_id_)
{
// partitioned charset list
charset_list charset_list_;
// vector mapping token indexes to partitioned token index sets
index_set_vector set_mapping_;
auto &dfa_ = internals_._dfa[dfa_index_];
std::size_t dfa_alphabet_ = 0;
const node_vector &followpos_ = root_->firstpos();
node_set_vector seen_sets_;
node_vector_vector seen_vectors_;
size_t_vector hash_vector_;
id_type zero_id_ = sm_traits::npos();
id_type_set eol_set_;
set_mapping_.resize(charset_map_.size());
partition_charsets(charset_map_, charset_list_, is_dfa());
build_set_mapping(charset_list_, internals_, dfa_index_,
set_mapping_);
if (nl_id_ != sm_traits::npos())
{
nl_id_ = *set_mapping_[nl_id_].begin();
zero_id_ = sm_traits::compressed ?
*set_mapping_[charset_map_.find(string_token(0, 0))->
second].begin() : sm_traits::npos();
}
dfa_alphabet_ = charset_list_.size() + transitions_index +
(nl_id_ == sm_traits::npos() ? 0 : 1);
if (dfa_alphabet_ > sm_traits::npos())
{
// Overflow
throw runtime_error("The data type you have chosen cannot hold "
"the dfa alphabet.");
}
internals_._dfa_alphabet[dfa_index_] =
static_cast<id_type>(dfa_alphabet_);
// 'jam' state
dfa_.resize(dfa_alphabet_, 0);
closure(followpos_, seen_sets_, seen_vectors_, hash_vector_,
static_cast<id_type>(dfa_alphabet_), dfa_);
// Loop over states
for (id_type index_ = 0; index_ < static_cast<id_type>
(seen_vectors_.size()); ++index_)
{
equivset_list equiv_list_;
// Intersect charsets
build_equiv_list(*seen_vectors_[index_].get(), set_mapping_,
equiv_list_, is_dfa());
for (auto &equivset_ : equiv_list_)
{
const id_type transition_ = closure
(equivset_->_followpos, seen_sets_, seen_vectors_,
hash_vector_, static_cast<id_type>(dfa_alphabet_), dfa_);
if (transition_ != sm_traits::npos())
{
observer_ptr<id_type> ptr_ = &dfa_.front() +
((index_ + 1) * dfa_alphabet_);
// Prune abstemious transitions from end states.
if (*ptr_ && !equivset_->_greedy) continue;
set_transitions(transition_, equivset_.get(), dfa_, ptr_,
index_, eol_set_);
}
}
}
fix_clashes(eol_set_, nl_id_, zero_id_, dfa_, dfa_alphabet_,
compressed());
append_dfa(charset_list_, internals_, sm_, dfa_index_, lookup());
}
static void set_transitions(const id_type transition_, equivset *equivset_,
typename internals::id_type_vector &dfa_, id_type *ptr_,
const id_type index_, id_type_set &eol_set_)
{
for (typename equivset::index_vector::const_iterator
equiv_iter_ = equivset_->_index_vector.begin(),
equiv_end_ = equivset_->_index_vector.end();
equiv_iter_ != equiv_end_; ++equiv_iter_)
{
const id_type i_ = *equiv_iter_;
if (i_ == parser::bol_token())
{
dfa_.front() = transition_;
}
else if (i_ == parser::eol_token())
{
ptr_[eol_index] = transition_;
eol_set_.insert(index_ + 1);
}
else
{
ptr_[i_ + transitions_index] = transition_;
}
}
}
// Uncompressed
static void fix_clashes(const id_type_set &eol_set_,
const id_type nl_id_, const id_type /*zero_id_*/,
typename internals::id_type_vector &dfa_,
const std::size_t dfa_alphabet_, const std::false_type &)
{
for (const auto &eol_ : eol_set_)
{
observer_ptr<id_type> ptr_ = &dfa_.front() + eol_ * dfa_alphabet_;
const id_type eol_state_ = ptr_[eol_index];
const id_type nl_state_ = ptr_[nl_id_ + transitions_index];
if (nl_state_)
{
ptr_[transitions_index + nl_id_] = 0;
ptr_ = &dfa_.front() + eol_state_ * dfa_alphabet_;
if (ptr_[transitions_index + nl_id_] == 0)
{
ptr_[transitions_index + nl_id_] = nl_state_;
}
}
}
}
// Compressed
static void fix_clashes(const id_type_set &eol_set_,
const id_type nl_id_, const id_type zero_id_,
typename internals::id_type_vector &dfa_,
const std::size_t dfa_alphabet_, const std::true_type &)
{
std::size_t i_ = 0;
for (const auto &eol_ : eol_set_)
{
observer_ptr<id_type> ptr_ = &dfa_.front() + eol_ * dfa_alphabet_;
const id_type eol_state_ = ptr_[eol_index];
id_type nl_state_ = 0;
for (; i_ < (sm_traits::char_24_bit ? 2 : 1); ++i_)
{
ptr_ = &dfa_.front() + ptr_[transitions_index + zero_id_] *
dfa_alphabet_;
}
nl_state_ = ptr_[transitions_index + nl_id_];
if (nl_state_)
{
ptr_ = &dfa_.front() + eol_state_ * dfa_alphabet_;
if (ptr_[transitions_index + zero_id_] != 0) continue;
ptr_[transitions_index + zero_id_] =
static_cast<id_type>(dfa_.size() / dfa_alphabet_);
dfa_.resize(dfa_.size() + dfa_alphabet_, 0);
for (i_ = 0; i_ < (sm_traits::char_24_bit ? 1 : 0); ++i_)
{
ptr_ = &dfa_.front() + dfa_.size() - dfa_alphabet_;
ptr_[transitions_index + zero_id_] =
static_cast<id_type>(dfa_.size() / dfa_alphabet_);
dfa_.resize(dfa_.size() + dfa_alphabet_, 0);
}
ptr_ = &dfa_.front() + dfa_.size() - dfa_alphabet_;
ptr_[transitions_index + nl_id_] = nl_state_;
}
}
}
// char_state_machine version
static void append_dfa(const charset_list &charset_list_,
const internals &internals_, sm &sm_, const id_type dfa_index_,
const std::false_type &)
{
std::size_t size_ = charset_list_.size();
typename sm::string_token_vector token_vector_;
token_vector_.reserve(size_);
for (const auto &charset_ : charset_list_)
{
token_vector_.push_back(charset_->_token);
}
sm_.append(token_vector_, internals_, dfa_index_);
}
// state_machine version
static void append_dfa(const charset_list &, const internals &, sm &,
const id_type, const std::true_type &)
{
// Nothing to do - will use create() instead
}
// char_state_machine version
static void create(internals &, sm &, const id_type_vector &,
const std::false_type &)
{
// Nothing to do - will use append_dfa() instead
}
// state_machine version
static void create(internals &internals_, sm &sm_,
const id_type_vector &features_, const std::true_type &)
{
for (std::size_t i_ = 0, size_ = internals_._dfa.size();
i_ < size_; ++i_)
{
internals_._features |= features_[i_];
}
if (internals_._dfa.size() > 1)
{
internals_._features |= multi_state_bit;
}
sm_.data().swap(internals_);
}
// NFA version
static void partition_charsets(const charset_map &map_,
charset_list &lhs_, const std::false_type &)
{
fill_rhs_list(map_, lhs_);
}
// DFA version
static void partition_charsets(const charset_map &map_,
charset_list &lhs_, const std::true_type &)
{
charset_list rhs_;
fill_rhs_list(map_, rhs_);
if (!rhs_.empty())
{
typename charset_list::iterator iter_;
typename charset_list::iterator end_;
charset_ptr overlap_ = std::make_unique<charset>();
lhs_.emplace_back(std::move(rhs_.front()));
rhs_.pop_front();
while (!rhs_.empty())
{
charset_ptr r_(rhs_.front().release());
rhs_.pop_front();
iter_ = lhs_.begin();
end_ = lhs_.end();
while (!r_->empty() && iter_ != end_)
{
auto l_iter_ = iter_;
(*l_iter_)->intersect(*r_.get(), *overlap_.get());
if (overlap_->empty())
{
++iter_;
}
else if ((*l_iter_)->empty())
{
l_iter_->reset(overlap_.release());
overlap_ = std::make_unique<charset>();
++iter_;
}
else if (r_->empty())
{
r_.reset(overlap_.release());
overlap_ = std::make_unique<charset>();
break;
}
else
{
iter_ = lhs_.insert(++iter_, charset_ptr());
iter_->reset(overlap_.release());
overlap_ = std::make_unique<charset>();
++iter_;
end_ = lhs_.end();
}
}
if (!r_->empty())
{
lhs_.emplace_back(std::move(r_));
}
}
}
}
static void fill_rhs_list(const charset_map &map_, charset_list &list_)
{
for (const auto &pair_ : map_)
{
list_.emplace_back(std::make_unique<charset>
(pair_.first, pair_.second));
}
}
static void build_set_mapping(const charset_list &charset_list_,
internals &internals_, const id_type dfa_index_,
index_set_vector &set_mapping_)
{
auto iter_ = charset_list_.cbegin();
auto end_ = charset_list_.cend();
for (id_type index_ = 0; iter_ != end_; ++iter_, ++index_)
{
observer_ptr<const charset> cs_ = iter_->get();
fill_lookup(cs_->_token, &internals_._lookup[dfa_index_],
index_, lookup());
for (const id_type i_ : cs_->_index_set)
{
set_mapping_[i_].insert(index_);
}
}
}
// char_state_machine version
static void fill_lookup(const string_token &, observer_ptr<id_type_vector> ,
const id_type, const std::false_type &)
{
// Do nothing (lookup not used)
}
// state_machine version
static void fill_lookup(const string_token &charset_,
observer_ptr<id_type_vector> lookup_, const id_type index_,
const std::true_type &)
{
observer_ptr<id_type> ptr_ = &lookup_->front();
for (const auto &range_ : charset_._ranges)
{
for (typename char_traits::index_type char_ = range_.first;
char_ < range_.second; ++char_)
{
// Note char_ must be unsigned
ptr_[char_] = index_ + transitions_index;
}
// Note range_.second must be unsigned
ptr_[range_.second] = index_ + transitions_index;
}
}
static id_type closure(const node_vector &followpos_,
node_set_vector &seen_sets_, node_vector_vector &seen_vectors_,
size_t_vector &hash_vector_, const id_type size_, id_type_vector &dfa_)
{
bool end_state_ = false;
id_type id_ = 0;
id_type user_id_ = sm_traits::npos();
id_type next_dfa_ = 0;
id_type push_dfa_ = sm_traits::npos();
bool pop_dfa_ = false;
std::size_t hash_ = 0;
if (followpos_.empty()) return sm_traits::npos();
id_type index_ = 0;
std::unique_ptr<node_set> set_ptr_ = std::make_unique<node_set>();
std::unique_ptr<node_vector> vector_ptr_ =
std::make_unique<node_vector>();
for (observer_ptr<node> node_ : followpos_)
{
closure_ex(node_, end_state_, id_, user_id_, next_dfa_,
push_dfa_, pop_dfa_, *set_ptr_.get(),
*vector_ptr_.get(), hash_);
}
bool found_ = false;
auto hash_iter_ = hash_vector_.cbegin();
auto hash_end_ = hash_vector_.cend();
auto set_iter_ = seen_sets_.cbegin();
for (; hash_iter_ != hash_end_; ++hash_iter_, ++set_iter_)
{
found_ = *hash_iter_ == hash_ && *(*set_iter_) == *set_ptr_;
++index_;
if (found_) break;
}
if (!found_)
{
seen_sets_.emplace_back(std::move(set_ptr_));
seen_vectors_.emplace_back(std::move(vector_ptr_));
hash_vector_.push_back(hash_);
// State 0 is the jam state...
index_ = static_cast<id_type>(seen_sets_.size());
const std::size_t old_size_ = dfa_.size();
dfa_.resize(old_size_ + size_, 0);
if (end_state_)
{
dfa_[old_size_] |= end_state_bit;
if (pop_dfa_)
{
dfa_[old_size_] |= pop_dfa_bit;
}
dfa_[old_size_ + id_index] = id_;
dfa_[old_size_ + user_id_index] = user_id_;
dfa_[old_size_ + push_dfa_index] = push_dfa_;
dfa_[old_size_ + next_dfa_index] = next_dfa_;
}
}
return index_;
}
static void closure_ex(observer_ptr<node> node_, bool &end_state_,
id_type &id_, id_type &user_id_, id_type &next_dfa_,
id_type &push_dfa_, bool &pop_dfa_, node_set &set_ptr_,
node_vector &vector_ptr_, std::size_t &hash_)
{
const bool temp_end_state_ = node_->end_state();
if (temp_end_state_)
{
if (!end_state_)
{
end_state_ = true;
id_ = node_->id();
user_id_ = node_->user_id();
next_dfa_ = node_->next_dfa();
push_dfa_ = node_->push_dfa();
pop_dfa_ = node_->pop_dfa();
}
}
if (set_ptr_.insert(node_).second)
{
vector_ptr_.push_back(node_);
hash_ += reinterpret_cast<std::size_t>(node_);
}
}
// NFA version
static void build_equiv_list(const node_vector &vector_,
const index_set_vector &set_mapping_, equivset_list &lhs_,
const std::false_type &)
{
fill_rhs_list(vector_, set_mapping_, lhs_);
}
// DFA version
static void build_equiv_list(const node_vector &vector_,
const index_set_vector &set_mapping_, equivset_list &lhs_,
const std::true_type &)
{
equivset_list rhs_;
fill_rhs_list(vector_, set_mapping_, rhs_);
if (!rhs_.empty())
{
typename equivset_list::iterator iter_;
typename equivset_list::iterator end_;
equivset_ptr overlap_ = std::make_unique<equivset>();
lhs_.emplace_back(std::move(rhs_.front()));
rhs_.pop_front();
while (!rhs_.empty())
{
equivset_ptr r_(rhs_.front().release());
rhs_.pop_front();
iter_ = lhs_.begin();
end_ = lhs_.end();
while (!r_->empty() && iter_ != end_)
{
auto l_iter_ = iter_;
(*l_iter_)->intersect(*r_.get(), *overlap_.get());
if (overlap_->empty())
{
++iter_;
}
else if ((*l_iter_)->empty())
{
l_iter_->reset(overlap_.release());
overlap_ = std::make_unique<equivset>();
++iter_;
}
else if (r_->empty())
{
r_.reset(overlap_.release());
overlap_ = std::make_unique<equivset>();
break;
}
else
{
iter_ = lhs_.insert(++iter_, equivset_ptr());
iter_->reset(overlap_.release());
overlap_ = std::make_unique<equivset>();
++iter_;
end_ = lhs_.end();
}
}
if (!r_->empty())
{
lhs_.emplace_back(std::move(r_));
}
}
}
}
static void fill_rhs_list(const node_vector &vector_,
const index_set_vector &set_mapping_, equivset_list &list_)
{
for (observer_ptr<const node> node_ : vector_)
{
if (!node_->end_state())
{
const id_type token_ = node_->token();
if (token_ != node::null_token())
{
if (token_ == parser::bol_token() ||
token_ == parser::eol_token())
{
std::set<id_type> index_set_;
index_set_.insert(token_);
list_.emplace_back
(std::make_unique<equivset>(index_set_,
token_, node_->greedy(), node_->followpos()));
}
else
{
list_.emplace_back(std::make_unique<equivset>
(set_mapping_[token_], token_, node_->greedy(),
node_->followpos()));
}
}
}
}
}
};
using generator = basic_generator<rules, state_machine>;
using wgenerator = basic_generator<wrules, wstate_machine>;
using u32generator = basic_generator<u32rules, u32state_machine>;
using char_generator = basic_generator<rules, char_state_machine>;
using wchar_generator = basic_generator<wrules, wchar_state_machine>;
using u32char_generator = basic_generator<u32rules, u32char_state_machine>;
}
#endif