sointu/go4k/bridge/bridge.go
Veikko Sariola e36aea59a5 feat(go4k): Algorithm to construct small delay times tables by abusing overlapping of different delay times.
The problem of finding a string that contains all particular substrings is the "shortest superstring problem"; it is NP-hard and analogous to traveling salesman problem. We use simple greedy search instead of trying to find true optimum. But even with these algorithm, units that use exactly the same delay times will always appear only once in the delay times table.
2020-11-09 22:29:10 +02:00

221 lines
8.2 KiB
Go

package bridge
import (
"errors"
"fmt"
"github.com/vsariola/sointu/go4k"
)
// #cgo CFLAGS: -I"${SRCDIR}/../../include/sointu"
// #cgo LDFLAGS: "${SRCDIR}/../../build/libsointu.a"
// #include <sointu.h>
import "C"
type opTableEntry struct {
opcode C.int
parameterList []string
}
var opcodeTable = map[string]opTableEntry{
"add": opTableEntry{C.su_add_id, []string{}},
"addp": opTableEntry{C.su_addp_id, []string{}},
"pop": opTableEntry{C.su_pop_id, []string{}},
"loadnote": opTableEntry{C.su_loadnote_id, []string{}},
"mul": opTableEntry{C.su_mul_id, []string{}},
"mulp": opTableEntry{C.su_mulp_id, []string{}},
"push": opTableEntry{C.su_push_id, []string{}},
"xch": opTableEntry{C.su_xch_id, []string{}},
"distort": opTableEntry{C.su_distort_id, []string{"drive"}},
"hold": opTableEntry{C.su_hold_id, []string{"holdfreq"}},
"crush": opTableEntry{C.su_crush_id, []string{"resolution"}},
"gain": opTableEntry{C.su_gain_id, []string{"gain"}},
"invgain": opTableEntry{C.su_invgain_id, []string{"invgain"}},
"filter": opTableEntry{C.su_filter_id, []string{"frequency", "resonance"}},
"clip": opTableEntry{C.su_clip_id, []string{}},
"pan": opTableEntry{C.su_pan_id, []string{"panning"}},
"delay": opTableEntry{C.su_delay_id, []string{"pregain", "dry", "feedback", "damp", "delaycount"}},
"compressor": opTableEntry{C.su_compres_id, []string{"attack", "release", "invgain", "threshold", "ratio"}},
"speed": opTableEntry{C.su_speed_id, []string{}},
"out": opTableEntry{C.su_out_id, []string{"gain"}},
"outaux": opTableEntry{C.su_outaux_id, []string{"outgain", "auxgain"}},
"aux": opTableEntry{C.su_aux_id, []string{"gain", "channel"}},
"send": opTableEntry{C.su_send_id, []string{"amount"}},
"envelope": opTableEntry{C.su_envelope_id, []string{"attack", "decay", "sustain", "release", "gain"}},
"noise": opTableEntry{C.su_noise_id, []string{"shape", "gain"}},
"oscillator": opTableEntry{C.su_oscillat_id, []string{"transpose", "detune", "phase", "color", "shape", "gain"}},
"loadval": opTableEntry{C.su_loadval_id, []string{"value"}},
"receive": opTableEntry{C.su_receive_id, []string{}},
"in": opTableEntry{C.su_in_id, []string{"channel"}},
}
// Render renders until the buffer is full or the modulated time is reached, whichever
// happens first.
// Parameters:
// buffer float32 slice to fill with rendered samples. Stereo signal, so
// should have even length.
// maxtime how long nominal time to render in samples. Speed unit might modulate time
// so the actual number of samples rendered depends on the modulation and if
// buffer is full before maxtime is reached.
// Returns a tuple (int, int, error), consisting of:
// samples number of samples rendered in the buffer
// time how much the time advanced
// error potential error
// In practice, if nsamples = len(buffer)/2, then time <= maxtime. If maxtime was reached
// first, then nsamples <= len(buffer)/2 and time >= maxtime. Note that it could happen that
// time > maxtime, as it is modulated and the time could advance by 2 or more, so the loop
// exit condition would fire when the time is already past maxtime.
// Under no conditions, nsamples >= len(buffer)/2 i.e. guaranteed to never overwrite the buffer.
func (synth *C.Synth) Render(buffer []float32, maxtime int) (int, int, error) {
if len(buffer)%1 == 1 {
return -1, -1, errors.New("RenderTime writes stereo signals, so buffer should have even length")
}
samples := C.int(len(buffer) / 2)
time := C.int(maxtime)
errcode := int(C.su_render(synth, (*C.float)(&buffer[0]), &samples, &time))
if errcode > 0 {
return -1, -1, errors.New("RenderTime failed")
}
return int(samples), int(time), nil
}
func Synth(patch go4k.Patch) (*C.Synth, error) {
s := new(C.Synth)
sampleno := 0
totalVoices := 0
commands := make([]byte, 0)
values := make([]byte, 0)
polyphonyBitmask := 0
delayTable, delayIndices := go4k.ConstructDelayTimeTable(patch)
for i, v := range delayTable {
s.DelayTimes[i] = C.ushort(v)
}
for insid, instr := range patch {
if len(instr.Units) > 63 {
return nil, errors.New("An instrument can have a maximum of 63 units")
}
if instr.NumVoices < 1 {
return nil, errors.New("Each instrument must have at least 1 voice")
}
for unitid, unit := range instr.Units {
if val, ok := opcodeTable[unit.Type]; ok {
opCode := val.opcode
if unit.Stereo {
opCode++
}
commands = append(commands, byte(opCode))
for _, paramname := range val.parameterList {
if unit.Type == "delay" && paramname == "delaycount" {
if unit.Stereo && len(unit.DelayTimes)%2 != 0 {
return nil, errors.New("Stereo delays should have even number of delaytimes")
}
values = append(values, byte(delayIndices[insid][unitid]))
count := len(unit.DelayTimes)
if unit.Stereo {
count /= 2
}
count = count*2 - 1
if unit.Parameters["notetracking"] == 1 {
count++
}
values = append(values, byte(count))
} else if unit.Type == "oscillator" && unit.Parameters["type"] == go4k.Sample && paramname == "color" {
values = append(values, byte(sampleno))
s.SampleOffsets[sampleno].Start = (C.uint)(unit.Parameters["start"])
s.SampleOffsets[sampleno].LoopStart = (C.ushort)(unit.Parameters["loopstart"])
s.SampleOffsets[sampleno].LoopLength = (C.ushort)(unit.Parameters["looplength"])
sampleno++
} else if pval, ok := unit.Parameters[paramname]; ok {
values = append(values, byte(pval))
} else {
return nil, fmt.Errorf("Unit parameter undefined: %v (at instrument %v, unit %v)", paramname, insid, unitid)
}
}
if unit.Type == "oscillator" {
flags := 0
switch unit.Parameters["type"] {
case go4k.Sine:
flags = 0x40
case go4k.Trisaw:
flags = 0x20
case go4k.Pulse:
flags = 0x10
case go4k.Gate:
flags = 0x04
case go4k.Sample:
flags = 0x80
}
if unit.Parameters["lfo"] == 1 {
flags += 0x08
}
flags += unit.Parameters["unison"]
values = append(values, byte(flags))
} else if unit.Type == "filter" {
flags := 0
if unit.Parameters["lowpass"] == 1 {
flags += 0x40
}
if unit.Parameters["bandpass"] == 1 {
flags += 0x20
}
if unit.Parameters["highpass"] == 1 {
flags += 0x10
}
if unit.Parameters["negbandpass"] == 1 {
flags += 0x08
}
if unit.Parameters["neghighpass"] == 1 {
flags += 0x04
}
values = append(values, byte(flags))
} else if unit.Type == "send" {
address := unit.Parameters["unit"]*16 + 24 + unit.Parameters["port"]
if unit.Parameters["voice"] != -1 {
address += 0x4000 + 16 + unit.Parameters["voice"]*1024 // global send, address is computed relative to synthworkspace
}
if unit.Parameters["pop"] == 1 {
address += 0x8000
}
values = append(values, byte(address&255), byte(address>>8))
}
} else {
return nil, fmt.Errorf("Unknown unit type: %v (at instrument %v, unit %v)", unit.Type, insid, unitid)
}
}
commands = append(commands, byte(C.su_advance_id))
totalVoices += instr.NumVoices
for k := 0; k < instr.NumVoices-1; k++ {
polyphonyBitmask = (polyphonyBitmask << 1) + 1
}
polyphonyBitmask <<= 1
}
if totalVoices > 32 {
return nil, errors.New("Sointu does not support more than 32 concurrent voices")
}
if len(commands) > 2048 { // TODO: 2048 could probably be pulled automatically from cgo
return nil, errors.New("The patch would result in more than 2048 commands")
}
if len(values) > 16384 { // TODO: 16384 could probably be pulled automatically from cgo
return nil, errors.New("The patch would result in more than 16384 values")
}
for i := range commands {
s.Commands[i] = (C.uchar)(commands[i])
}
for i := range values {
s.Values[i] = (C.uchar)(values[i])
}
s.NumVoices = C.uint(totalVoices)
s.Polyphony = C.uint(polyphonyBitmask)
s.RandSeed = 1
return s, nil
}
func (s *C.Synth) Trigger(voice int, note byte) {
s.SynthWrk.Voices[voice] = C.Voice{}
s.SynthWrk.Voices[voice].Note = C.int(note)
}
func (s *C.Synth) Release(voice int) {
s.SynthWrk.Voices[voice].Release = 1
}