sointu/tracker/player.go
2024-10-22 07:56:36 +03:00

447 lines
12 KiB
Go

package tracker
import (
"fmt"
"math"
"github.com/vsariola/sointu"
"github.com/vsariola/sointu/vm"
)
type (
// Player is the audio player for the tracker, run in a separate thread. It
// is controlled by messages from the model and MIDI messages via the
// context, typically from the VSTI host. The player sends messages to the
// model via the playerMessages channel. The model sends messages to the
// player via the modelMessages channel.
Player struct {
synth sointu.Synth // the synth used to render audio
song sointu.Song // the song being played
playing bool // is the player playing the score or not
rowtime int // how many samples have been played in the current row
songPos sointu.SongPos // the current position in the score
avgVolumeMeter VolumeAnalyzer // the volume analyzer used to calculate the average volume
peakVolumeMeter VolumeAnalyzer // the volume analyzer used to calculate the peak volume
voiceLevels [vm.MAX_VOICES]float32 // a level that can be used to visualize the volume of each voice
voices [vm.MAX_VOICES]voice
loop Loop
recState recState // is the recording off; are we waiting for a note; or are we recording
recording Recording // the recorded MIDI events and BPM
synther sointu.Synther // the synther used to create new synths
playerMsgs chan<- PlayerMsg
modelMsgs <-chan interface{}
}
// PlayerProcessContext is the context given to the player when processing
// audio. It is used to get MIDI events and the current BPM.
PlayerProcessContext interface {
NextEvent() (event MIDINoteEvent, ok bool)
BPM() (bpm float64, ok bool)
}
EventProcessor interface {
ProcessMessage(msg interface{})
ProcessEvent(event MIDINoteEvent)
}
// MIDINoteEvent is a MIDI event triggering or releasing a note. In
// processing, the Frame is relative to the start of the current buffer. In
// a Recording, the Frame is relative to the start of the recording.
MIDINoteEvent struct {
Frame int
On bool
Channel int
Note byte
}
// PlayerMsg is a message sent from the player to the model. The Inner
// field can contain any message. Panic, AverageVolume, PeakVolume, SongRow
// and VoiceStates transmitted frequently, with every message, so they are
// treated specially, to avoid boxing. All the rest messages can be boxed to
// Inner interface{}
PlayerMsg struct {
Panic bool
AverageVolume Volume
PeakVolume Volume
SongPosition sointu.SongPos
VoiceLevels [vm.MAX_VOICES]float32
Inner interface{}
}
)
type (
recState int
voice struct {
noteID int
sustain bool
samplesSinceEvent int
}
)
const (
recStateNone recState = iota
recStateWaitingForNote
recStateRecording
)
const numRenderTries = 10000
// Process renders audio to the given buffer, trying to fill it completely. If
// the buffer is not filled, the synth is destroyed and an error is sent to the
// model. context tells the player which MIDI events happen during the current
// buffer. It is used to trigger and release notes during processing. The
// context is also used to get the current BPM from the host.
func (p *Player) Process(buffer sointu.AudioBuffer, context PlayerProcessContext, ui EventProcessor) {
p.processMessages(context, ui)
midi, midiOk := context.NextEvent()
frame := 0
if p.recState == recStateRecording {
p.recording.TotalFrames += len(buffer)
}
oldBuffer := buffer
for i := 0; i < numRenderTries; i++ {
for midiOk && frame >= midi.Frame {
if p.recState == recStateWaitingForNote {
p.recording.TotalFrames = len(buffer)
p.recState = recStateRecording
}
if p.recState == recStateRecording {
midiTotalFrame := midi
midiTotalFrame.Frame = p.recording.TotalFrames - len(buffer)
p.recording.Events = append(p.recording.Events, midiTotalFrame)
}
if midi.On {
p.triggerInstrument(midi.Channel, midi.Note)
} else {
p.releaseInstrument(midi.Channel, midi.Note)
}
if ui != nil {
ui.ProcessEvent(midi)
}
midi, midiOk = context.NextEvent()
}
framesUntilMidi := len(buffer)
if delta := midi.Frame - frame; midiOk && delta < framesUntilMidi {
framesUntilMidi = delta
}
if p.playing && p.rowtime >= p.song.SamplesPerRow() {
p.advanceRow()
}
timeUntilRowAdvance := math.MaxInt32
if p.playing {
timeUntilRowAdvance = p.song.SamplesPerRow() - p.rowtime
}
if timeUntilRowAdvance < 0 {
timeUntilRowAdvance = 0
}
var rendered, timeAdvanced int
var err error
if p.synth != nil {
rendered, timeAdvanced, err = p.synth.Render(buffer[:framesUntilMidi], timeUntilRowAdvance)
} else {
mx := framesUntilMidi
if timeUntilRowAdvance < mx {
mx = timeUntilRowAdvance
}
for i := 0; i < mx; i++ {
buffer[i] = [2]float32{}
}
rendered = mx
timeAdvanced = mx
}
if err != nil {
p.synth = nil
p.send(Alert{Message: fmt.Sprintf("synth.Render: %s", err.Error()), Priority: Error, Name: "PlayerCrash"})
}
buffer = buffer[rendered:]
frame += rendered
p.rowtime += timeAdvanced
for i := range p.voices {
p.voices[i].samplesSinceEvent += rendered
}
alpha := float32(math.Exp(-float64(rendered) / 15000))
for i, state := range p.voices {
if state.sustain {
p.voiceLevels[i] = (p.voiceLevels[i]-0.5)*alpha + 0.5
} else {
p.voiceLevels[i] *= alpha
}
}
// when the buffer is full, return
if len(buffer) == 0 {
err := p.avgVolumeMeter.Update(oldBuffer)
err2 := p.peakVolumeMeter.Update(oldBuffer)
if err != nil {
p.synth = nil
p.SendAlert("PlayerVolume", err.Error(), Warning)
return
}
if err2 != nil {
p.synth = nil
p.SendAlert("PlayerVolume", err2.Error(), Warning)
return
}
p.send(nil)
return
}
}
// we were not able to fill the buffer with NUM_RENDER_TRIES attempts, destroy synth and throw an error
p.synth = nil
p.SendAlert("PlayerCrash", fmt.Sprintf("synth did not fill the audio buffer even with %d render calls", numRenderTries), Error)
}
func (p *Player) advanceRow() {
if p.song.Score.Length == 0 || p.song.Score.RowsPerPattern == 0 {
return
}
origPos := p.songPos
p.songPos.PatternRow++ // advance row (this is why we subtracted one in Play())
if p.loop.Length > 0 && p.songPos.PatternRow >= p.song.Score.RowsPerPattern && p.songPos.OrderRow == p.loop.Start+p.loop.Length-1 {
p.songPos.PatternRow = 0
p.songPos.OrderRow = p.loop.Start
}
p.songPos = p.song.Score.Clamp(p.songPos)
if p.songPos == origPos {
p.send(IsPlayingMsg{bool: false})
p.playing = false
for i := range p.song.Score.Tracks {
p.releaseTrack(i)
}
return
}
p.send(nil) // just send volume and song row information
lastVoice := 0
for i, t := range p.song.Score.Tracks {
start := lastVoice
lastVoice = start + t.NumVoices
n := t.Note(p.songPos)
switch {
case n == 0:
p.releaseTrack(i)
case n > 1:
p.triggerTrack(i, n)
default: // n == 1
}
}
p.rowtime = 0
}
func (p *Player) processMessages(context PlayerProcessContext, uiProcessor EventProcessor) {
loop:
for { // process new message
select {
case msg := <-p.modelMsgs:
switch m := msg.(type) {
case PanicMsg:
if m.bool {
p.synth = nil
} else {
p.compileOrUpdateSynth()
}
case sointu.Song:
p.song = m
p.compileOrUpdateSynth()
case sointu.Patch:
p.song.Patch = m
p.compileOrUpdateSynth()
case sointu.Score:
p.song.Score = m
case Loop:
p.loop = m
case IsPlayingMsg:
p.playing = bool(m.bool)
if !p.playing {
for i := range p.song.Score.Tracks {
p.releaseTrack(i)
}
}
case BPMMsg:
p.song.BPM = m.int
p.compileOrUpdateSynth()
case RowsPerBeatMsg:
p.song.RowsPerBeat = m.int
p.compileOrUpdateSynth()
case StartPlayMsg:
p.playing = true
p.songPos = m.SongPos
p.songPos.PatternRow--
p.rowtime = math.MaxInt
for i, t := range p.song.Score.Tracks {
if !t.Effect {
// when starting to play from another position, release only non-effect tracks
p.releaseTrack(i)
}
}
case NoteOnMsg:
if m.IsInstr {
p.triggerInstrument(m.Instr, m.Note)
} else {
p.triggerTrack(m.Track, m.Note)
}
case NoteOffMsg:
if m.IsInstr {
p.releaseInstrument(m.Instr, m.Note)
} else {
p.releaseTrack(m.Track)
}
case RecordingMsg:
if m.bool {
p.recState = recStateWaitingForNote
p.recording = Recording{}
} else {
if p.recState == recStateRecording && len(p.recording.Events) > 0 {
p.recording.BPM, _ = context.BPM()
p.send(p.recording)
}
p.recState = recStateNone
}
default:
// ignore unknown messages
}
if uiProcessor != nil {
uiProcessor.ProcessMessage(msg)
}
default:
break loop
}
}
}
func (p *Player) SendAlert(name, message string, priority AlertPriority) {
p.send(Alert{
Name: name,
Priority: priority,
Message: message,
Duration: defaultAlertDuration,
})
}
func (p *Player) compileOrUpdateSynth() {
if p.song.BPM <= 0 {
return // bpm not set yet
}
if p.synth != nil {
err := p.synth.Update(p.song.Patch, p.song.BPM)
if err != nil {
p.synth = nil
p.SendAlert("PlayerCrash", fmt.Sprintf("synth.Update: %v", err), Error)
return
}
} else {
var err error
p.synth, err = p.synther.Synth(p.song.Patch, p.song.BPM)
if err != nil {
p.synth = nil
p.SendAlert("PlayerCrash", fmt.Sprintf("synther.Synth: %v", err), Error)
return
}
}
voice := 0
for _, instr := range p.song.Patch {
if instr.Mute {
for j := 0; j < instr.NumVoices; j++ {
p.synth.Release(voice + j)
}
}
voice += instr.NumVoices
}
}
// all sends from player are always non-blocking, to ensure that the player thread cannot end up in a dead-lock
func (p *Player) send(message interface{}) {
select {
case p.playerMsgs <- PlayerMsg{Panic: p.synth == nil, AverageVolume: p.avgVolumeMeter.Level, PeakVolume: p.peakVolumeMeter.Level, SongPosition: p.songPos, VoiceLevels: p.voiceLevels, Inner: message}:
default:
}
}
func (p *Player) triggerInstrument(instrument int, note byte) {
ID := idForInstrumentNote(instrument, note)
p.release(ID)
if p.song.Patch == nil || instrument < 0 || instrument >= len(p.song.Patch) {
return
}
voiceStart := p.song.Patch.FirstVoiceForInstrument(instrument)
voiceEnd := voiceStart + p.song.Patch[instrument].NumVoices
p.trigger(voiceStart, voiceEnd, note, ID)
}
func (p *Player) releaseInstrument(instrument int, note byte) {
p.release(idForInstrumentNote(instrument, note))
}
func (p *Player) triggerTrack(track int, note byte) {
ID := idForTrack(track)
p.release(ID)
voiceStart := p.song.Score.FirstVoiceForTrack(track)
voiceEnd := voiceStart + p.song.Score.Tracks[track].NumVoices
p.trigger(voiceStart, voiceEnd, note, ID)
}
func (p *Player) releaseTrack(track int) {
p.release(idForTrack(track))
}
func (p *Player) trigger(voiceStart, voiceEnd int, note byte, ID int) {
if p.synth == nil {
return
}
var age int = 0
oldestReleased := false
oldestVoice := 0
for i := voiceStart; i < voiceEnd; i++ {
// find a suitable voice to trigger. if the voice has been released,
// then we prefer to trigger that over a voice that is still playing. in
// case two voices are both playing or or both are released, we prefer
// the older one
if (!p.voices[i].sustain && !oldestReleased) ||
(!p.voices[i].sustain == oldestReleased && p.voices[i].samplesSinceEvent >= age) {
oldestVoice = i
oldestReleased = !p.voices[i].sustain
age = p.voices[i].samplesSinceEvent
}
}
instrIndex, err := p.song.Patch.InstrumentForVoice(oldestVoice)
if err != nil || p.song.Patch[instrIndex].Mute {
return
}
p.voices[oldestVoice] = voice{noteID: ID, sustain: true, samplesSinceEvent: 0}
p.voiceLevels[oldestVoice] = 1.0
p.synth.Trigger(oldestVoice, note)
}
func (p *Player) release(ID int) {
if p.synth == nil {
return
}
for i := range p.voices {
if p.voices[i].noteID == ID && p.voices[i].sustain {
p.voices[i].sustain = false
p.voices[i].samplesSinceEvent = 0
p.synth.Release(i)
return
}
}
}
// we need to give voices triggered by different sources a identifier who triggered it
// positive values are for voices triggered by instrument jamming i.e. MIDI message from
// host or pressing key on the keyboard
// negative values are for voices triggered by tracks when playing a song
func idForInstrumentNote(instrument int, note byte) int {
return instrument*256 + int(note)
}
func idForTrack(track int) int {
return -1 - track
}