sointu/go4k/algorithms.go
2020-11-10 20:05:03 +02:00

167 lines
6.0 KiB
Go

package go4k
// FindSuperIntArray finds a small super array containing all
// the subarrays passed to it. Returns the super array and indices where
// the subarrays can be found. For example:
// FindSuperIntArray([][]int{{4,5,6},{1,2,3},{3,4}})
// returns {1,2,3,4,5,6},{3,0,2}
// Implemented using a greedy search, so does not necessarily find
// the true optimal (the problem is NP-hard and analogous to traveling
// salesman problem).
//
// Used to construct a small delay time table without unnecessary repetition
// of delay times.
func FindSuperIntArray(arrays [][]int) ([]int, []int) {
// If we go past MAX_MERGES, the algorithm could get slow and hang the computer
// So this is a safety limit: after this problem size, just merge any arrays
// until we get into more manageable range
const maxMerges = 1000
min := func(a int, b int) int {
if a < b {
return a
}
return b
}
overlap := func(a []int, b []int) (int, int) {
minShift := len(a)
for shift := len(a) - 1; shift >= 0; shift-- {
overlapping := true
for k := shift; k < min(len(a), len(b)+shift); k++ {
if a[k] != b[k-shift] {
overlapping = false
break
}
}
if overlapping {
minShift = shift
}
}
overlap := min(len(a)-minShift, len(b))
return overlap, minShift
}
sliceNumbers := make([]int, len(arrays))
startIndices := make([]int, len(arrays))
var processedArrays [][]int
for i := range arrays {
if len(arrays[i]) == 0 {
// Zero length arrays do not need to be processed at all
// They will 'start' at index 0 always as they have no length.
sliceNumbers[i] = -1
} else {
sliceNumbers[i] = len(processedArrays)
processedArrays = append(processedArrays, arrays[i])
}
}
if len(processedArrays) == 0 {
return []int{}, startIndices // no arrays with len>0 to process, just return empty array and all indices as 0
}
for len(processedArrays) > 1 { // there's at least two candidates that could be be merged
maxO, maxI, maxJ, maxS := -1, -1, -1, -1
if len(processedArrays) < maxMerges {
// find the pair i,j that results in the largest overlap with array i coming first, followed by potentially overlapping array j
for i := range processedArrays {
for j := range processedArrays {
if i == j {
continue
}
overlap, shift := overlap(processedArrays[i], processedArrays[j])
if overlap > maxO {
maxI, maxJ, maxO, maxS = i, j, overlap, shift
}
}
}
} else {
// The task is daunting, we have over MAX_MERGES overlaps to test. Just merge two first ones until the task is more manageable size
overlap, shift := overlap(processedArrays[0], processedArrays[1])
maxI, maxJ, maxO, maxS = 0, 1, overlap, shift
}
for k := range sliceNumbers {
if sliceNumbers[k] == maxJ {
// update slice pointers to point maxI instead of maxJ (maxJ will be appended to maxI, taking overlap into account)
sliceNumbers[k] = maxI
startIndices[k] += maxS // the array j starts at index maxS in array i
}
if sliceNumbers[k] > maxJ {
// pointers maxJ reduced by 1 as maxJ will be deleted
sliceNumbers[k]--
}
}
// if array j was not entirely included within array j
if maxO < len(processedArrays[maxJ]) {
// append array maxJ to array maxI, without duplicating the overlapping part
processedArrays[maxI] = append(processedArrays[maxI], processedArrays[maxJ][maxO:]...)
}
// finally, remove element maxJ from processedArrays
processedArrays = append(processedArrays[:maxJ], processedArrays[maxJ+1:]...)
}
return processedArrays[0], startIndices // there should be only one slice left in the arrays after the loop
}
// ConstructDelayTimeTable tries to construct the delay times table
// abusing overlapping between different delay times tables as much
// as possible. Especially: if two delay units use exactly the same
// delay times, they appear in the table only once.
func ConstructDelayTimeTable(patch Patch) ([]int, [][]int) {
ind := make([][]int, len(patch))
var subarrays [][]int
// flatten the delay times into one array of arrays
// saving the indices where they were placed
for i, instr := range patch {
ind[i] = make([]int, len(instr.Units))
for j, unit := range instr.Units {
// only include delay times for delays. Only delays
// should use delay times
if unit.Type == "delay" {
ind[i][j] = len(subarrays)
subarrays = append(subarrays, unit.DelayTimes)
}
}
}
delayTable, indices := FindSuperIntArray(subarrays)
// cancel the flattening, so unitindices can be used to
// to find the index of each delay in the delay table
unitindices := make([][]int, len(patch))
for i, instr := range patch {
unitindices[i] = make([]int, len(instr.Units))
for j, unit := range instr.Units {
if unit.Type == "delay" {
unitindices[i][j] = indices[ind[i][j]]
}
}
}
return delayTable, unitindices
}
// ConstructSampleOffsetTable collects the sample offests from
// all sample-based oscillators and collects them in a table,
// so that they appear in the table only once. Returns the collected
// table and [][]int array where element [i][j] is the index in the
// table by instrument i / unit j (units other than sample oscillators
// have the value 0)
func ConstructSampleOffsetTable(patch Patch) ([]SampleOffset, [][]int) {
unitindices := make([][]int, len(patch))
var offsetTable []SampleOffset
offsetMap := map[SampleOffset]int{}
for i, instr := range patch {
unitindices[i] = make([]int, len(instr.Units))
for j, unit := range instr.Units {
if unit.Type == "oscillator" && unit.Parameters["type"] == Sample {
offset := SampleOffset{
Start: unit.Parameters["start"],
LoopStart: unit.Parameters["loopstart"],
LoopLength: unit.Parameters["looplength"],
}
if ind, ok := offsetMap[offset]; ok {
unitindices[i][j] = ind // the sample has been already added to table, reuse the index
} else {
ind = len(offsetTable)
unitindices[i][j] = ind
offsetMap[offset] = ind
offsetTable = append(offsetTable, offset)
}
}
}
}
return offsetTable, unitindices
}