sointu/audio.go
5684185+vsariola@users.noreply.github.com 5bbec75120 refactor: rename sointu.Render as AudioBuffer.Fill
The Render name misleading as it did not do the same thing as normal
Synth.Render, because it disregarded time limits. Conceptually, as
the function modifies the state of the synth, it would be better to
be synth.Fill(audioBuffer), but we cannot define methods on
interfaces; therefore, it is audioBuffer.Fill(synth) now.
2023-10-19 11:14:44 +03:00

151 lines
4.9 KiB
Go

package sointu
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"math"
)
type (
// AudioBuffer is a buffer of stereo audio samples of variable length, each
// sample represented by [2]float32. [0] is left channel, [1] is right
AudioBuffer [][2]float32
// AudioOutput represents something where we can send audio e.g. audio output.
// WriteAudio should block if not ready to accept audio e.g. buffer full.
AudioOutput interface {
WriteAudio(buffer AudioBuffer) error
Close() error
}
// AudioContext represents the low-level audio drivers. There should be at most
// one AudioContext at a time. The interface is implemented at least by
// oto.OtoContext, but in future we could also mock it.
//
// AudioContext is used to create one or more AudioOutputs with Output(); each
// can be used to output separate sound & closed when done.
AudioContext interface {
Output() AudioOutput
Close() error
}
)
// Fill fills the AudioBuffer using a Synth, disregarding all syncs and time
// limits. Note that this will change the state of the Synth.
func (buffer AudioBuffer) Fill(synth Synth) error {
s, _, err := synth.Render(buffer, math.MaxInt32)
if err != nil {
return fmt.Errorf("synth.Render failed: %v", err)
}
if s != len(buffer) {
return errors.New("in AudioBuffer.Fill, synth.Render should have filled the whole buffer but did not")
}
return nil
}
// Wav converts an AudioBuffer into a valid WAV-file, returned as a []byte
// array.
//
// If pcm16 is set to true, the samples in the WAV-file will be 16-bit signed
// integers; otherwise the samples will be 32-bit floats
func (buffer AudioBuffer) Wav(pcm16 bool) ([]byte, error) {
buf := new(bytes.Buffer)
wavHeader(len(buffer)*2, pcm16, buf)
err := buffer.rawToBuffer(pcm16, buf)
if err != nil {
return nil, fmt.Errorf("Wav failed: %v", err)
}
return buf.Bytes(), nil
}
// Raw converts an AudioBuffer into a raw audio file, returned as a []byte
// array.
//
// If pcm16 is set to true, the samples will be 16-bit signed integers;
// otherwise the samples will be 32-bit floats
func (buffer AudioBuffer) Raw(pcm16 bool) ([]byte, error) {
buf := new(bytes.Buffer)
err := buffer.rawToBuffer(pcm16, buf)
if err != nil {
return nil, fmt.Errorf("Raw failed: %v", err)
}
return buf.Bytes(), nil
}
func (data AudioBuffer) rawToBuffer(pcm16 bool, buf *bytes.Buffer) error {
var err error
if pcm16 {
int16data := make([][2]int16, len(data))
for i, v := range data {
int16data[i][0] = int16(clamp(int(v[0]*math.MaxInt16), math.MinInt16, math.MaxInt16))
int16data[i][1] = int16(clamp(int(v[1]*math.MaxInt16), math.MinInt16, math.MaxInt16))
}
err = binary.Write(buf, binary.LittleEndian, int16data)
} else {
err = binary.Write(buf, binary.LittleEndian, data)
}
if err != nil {
return fmt.Errorf("could not binary write data to binary buffer: %v", err)
}
return nil
}
// wavHeader writes a wave header for either float32 or int16 .wav file into the
// bytes.buffer. It needs to know the length of the buffer and assumes stereo
// sound, so the length in stereo samples (L + R) is bufferlength / 2. If pcm16
// = true, then the header is for int16 audio; pcm16 = false means the header is
// for float32 audio. Assumes 44100 Hz sample rate.
func wavHeader(bufferLength int, pcm16 bool, buf *bytes.Buffer) {
// Refer to: http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html
numChannels := 2
sampleRate := 44100
var bytesPerSample, chunkSize, fmtChunkSize, waveFormat int
var factChunk bool
if pcm16 {
bytesPerSample = 2
chunkSize = 36 + bytesPerSample*bufferLength
fmtChunkSize = 16
waveFormat = 1 // PCM
factChunk = false
} else {
bytesPerSample = 4
chunkSize = 50 + bytesPerSample*bufferLength
fmtChunkSize = 18
waveFormat = 3 // IEEE float
factChunk = true
}
buf.Write([]byte("RIFF"))
binary.Write(buf, binary.LittleEndian, uint32(chunkSize))
buf.Write([]byte("WAVE"))
buf.Write([]byte("fmt "))
binary.Write(buf, binary.LittleEndian, uint32(fmtChunkSize))
binary.Write(buf, binary.LittleEndian, uint16(waveFormat))
binary.Write(buf, binary.LittleEndian, uint16(numChannels))
binary.Write(buf, binary.LittleEndian, uint32(sampleRate))
binary.Write(buf, binary.LittleEndian, uint32(sampleRate*numChannels*bytesPerSample)) // avgBytesPerSec
binary.Write(buf, binary.LittleEndian, uint16(numChannels*bytesPerSample)) // blockAlign
binary.Write(buf, binary.LittleEndian, uint16(8*bytesPerSample)) // bits per sample
if fmtChunkSize > 16 {
binary.Write(buf, binary.LittleEndian, uint16(0)) // size of extension
}
if factChunk {
buf.Write([]byte("fact"))
binary.Write(buf, binary.LittleEndian, uint32(4)) // fact chunk size
binary.Write(buf, binary.LittleEndian, uint32(bufferLength)) // sample length
}
buf.Write([]byte("data"))
binary.Write(buf, binary.LittleEndian, uint32(bytesPerSample*bufferLength))
}
func clamp(value, min, max int) int {
if value < min {
return min
}
if value > max {
return max
}
return value
}