package tracker import ( "errors" "math" "github.com/vsariola/sointu" ) type ( Volume [2]float64 // VolumeAnalyzer measures the volume in an AudioBuffer, in decibels relative to // full scale (0 dB = signal level of +-1) VolumeAnalyzer struct { Level Volume // current volume level of left and right channels Attack float64 // attack time constant in seconds Release float64 // release time constant in seconds Min float64 // minimum volume in decibels Max float64 // maximum volume in decibels } ) var nanError = errors.New("NaN detected in master output") // Update updates the Level field, by analyzing the given buffer. // // Internally, it first converts the signal to decibels (0 dB = +-1). Then, the // average volume level is computed by smoothing the decibel values with a // exponentially decaying average, with a time constant Attack (in seconds) if // the decibel value is greater than current level and time constant Decay (in // seconds) if the decibel value is less than current level. // // Typical time constants for average level detection would be 0.3 seconds for // both attack and release. For peak level detection, attack could be 1.5e-3 and // release 1.5 (seconds) // // MinVolume and MaxVolume are hard limits in decibels to prevent negative // infinities for volumes func (v *VolumeAnalyzer) Update(buffer sointu.AudioBuffer) (err error) { // from https://en.wikipedia.org/wiki/Exponential_smoothing alphaAttack := 1 - math.Exp(-1.0/(v.Attack*44100)) alphaRelease := 1 - math.Exp(-1.0/(v.Release*44100)) for j := 0; j < 2; j++ { for i := 0; i < len(buffer); i++ { sample2 := float64(buffer[i][j] * buffer[i][j]) if math.IsNaN(sample2) { if err == nil { err = nanError } continue } dB := 10 * math.Log10(sample2) if dB < v.Min || math.IsNaN(dB) { dB = v.Min } if dB > v.Max { dB = v.Max } a := alphaAttack if dB < v.Level[j] { a = alphaRelease } v.Level[j] += (dB - v.Level[j]) * a } } return err }