package tracker import ( "math" "math/cmplx" "github.com/viterin/vek/vek32" "github.com/vsariola/sointu" ) type ( SpecAnalyzer struct { settings SpecAnSettings broker *Broker chunker chunker temp specTemp } SpecAnSettings struct { ChnMode SpecChnMode Smooth int Resolution int } SpecChnMode int Spectrum [2][]float32 specTemp struct { power [2][]float32 window []float32 // window weighting function normFactor float32 // normalization factor, to account for the windowing bitPerm []int // bit-reversal permutation table tmpC []complex128 // temporary buffer for FFT tmp1, tmp2 []float32 // temporary buffers for processing } BiquadCoeffs struct { b0, b1, b2 float32 a0, a1, a2 float32 } SpecAnEnabled Model ) const ( SpecResolutionMin = -3 SpecResolutionMax = 3 ) const ( SpecSpeedMin = -3 SpecSpeedMax = 3 ) const ( SpecChnModeSum SpecChnMode = iota // calculate a single combined spectrum for both channels SpecChnModeSeparate // calculate separate spectrums for left and right channels NumSpecChnModes ) func (m *Model) SpecAnEnabled() Bool { return MakeEnabledBool((*simpleBool)(&m.specAnEnabled)) } func NewSpecAnalyzer(broker *Broker) *SpecAnalyzer { ret := &SpecAnalyzer{broker: broker} ret.init(SpecAnSettings{}) return ret } func (m *Model) BiquadCoeffs() (coeffs BiquadCoeffs, ok bool) { i := m.d.InstrIndex u := m.d.UnitIndex if i < 0 || i >= len(m.d.Song.Patch) || u < 0 || u >= len(m.d.Song.Patch[i].Units) { return BiquadCoeffs{}, false } switch m.d.Song.Patch[i].Units[u].Type { case "filter": p := m.d.Song.Patch[i].Units[u].Parameters f := float32(p["frequency"]) / 128 f *= f r := float32(p["resonance"]) / 128 // The equations for the filter are: // s1[n+1] = s1[n] + f*s2[n] // h = u - s1[n+1] - r*s2[n] // s2[n+1] = s2[n] + f*h = s2[n] + f*(u-s1[n]-f*s2[n]-r*s2[n]) = - f*s1[n]+(1-f*r-f*f)*s2[n] + f*u // y_low[n] = s1[n+1], y_band[n] = s2[n+1], y_high[n] = -s1[n+1]-r*s2[n]+u // This gives state space representation // s(n+1) = A*s(n)+B*u, where A = [1 f;-f 1-f*r-f*f] and B = [0;f] // y(n) = C*s(n)+D*u, where // C_low = [z 0], C_band = [0 z], C_high = [-z -r], D_high = [1] (note we use those z:s in C to account for those 1 sample time shifts) // The transfer function is then H(z) = C*(zI-A)^-1*B + D // z*I-A = [z-1 -f; f z+f*r+f*f-1] // Calculate (zI-A)^-1*B: // (z*I-A)^-1*B = 1/det * [z+f*r+f*f-1 f; -f z-1] * [0;f] = 1/det * f * [f; z-1], where // det = (z+f*r+f*f-1)*(z-1)+f^2 = z*z+z*f*r+z*f*f-z-z-f*r-f*f+1+f^2 = z*z + (r*f+f*f-2)*z + 1-f*r = a0*z^2 + a1*z + a2 // Low: [z 0]*f*[f;z-1] / det = f*f*z / det = b1 * z / det // Band: [0 z]*f*[f;z-1] / det = (f*z^2-f*z) / det = (b0*z^2 + b1*z) / det // High: [-z -r]*f*[f;z-1] / det + 1 = ((-f*f-r*f)*z+r*f)/det + 1 = ((-f*f-r*f)*z+r*f+det)/det = (z^2-2*z+1)/det = (b0*z^2 + b1*z + b2)/det // Negative versions have only b coefficients negated var a0 float32 = 1 var a1 float32 = r*f + f*f - 2 var a2 float32 = 1 - f*r var b0, b1, b2 float32 b1 += f * f * float32(p["lowpass"]) b0 += f * float32(p["bandpass"]) b1 -= f * float32(p["bandpass"]) b0 += float32(p["highpass"]) b1 += -2 * float32(p["highpass"]) b2 += float32(p["highpass"]) return BiquadCoeffs{a0: a0, a1: a1, a2: a2, b0: b0, b1: b1, b2: b2}, true case "belleq": f := float32(m.d.Song.Patch[i].Units[u].Parameters["frequency"]) / 128 band := float32(m.d.Song.Patch[i].Units[u].Parameters["bandwidth"]) / 128 gain := float32(m.d.Song.Patch[i].Units[u].Parameters["gain"]) / 128 omega0 := 2 * f * f alpha := float32(math.Sin(float64(omega0))) * 2 * band A := float32(math.Pow(2, float64(gain-.5)*6.643856189774724)) u, v := alpha*A, alpha/A return BiquadCoeffs{ b0: 1 + u, b1: -2 * float32(math.Cos(float64(omega0))), b2: 1 - u, a0: 1 + v, a1: -2 * float32(math.Cos(float64(omega0))), a2: 1 - v, }, true default: return BiquadCoeffs{}, false } } func (c *BiquadCoeffs) Gain(omega float32) float32 { e := cmplx.Rect(1, -float64(omega)) return float32(cmplx.Abs((complex(float64(c.b0), 0) + complex(float64(c.b1), 0)*e + complex(float64(c.b2), 0)*(e*e)) / (complex(float64(c.a0), 0) + complex(float64(c.a1), 0)*e + complex(float64(c.a2), 0)*e*e))) } func (s *SpecAnalyzer) Run() { for { select { case <-s.broker.CloseSpecAn: close(s.broker.FinishedSpecAn) return case msg := <-s.broker.ToSpecAn: s.handleMsg(msg) } } } func (s *SpecAnalyzer) handleMsg(msg MsgToSpecAn) { if msg.HasSettings { s.init(msg.SpecSettings) } switch m := msg.Data.(type) { case *sointu.AudioBuffer: buf := *m l := len(s.temp.window) // 50% overlap with the windows s.chunker.Process(buf, l, l>>1, func(chunk sointu.AudioBuffer) { TrySend(s.broker.ToModel, MsgToModel{Data: s.update(chunk)}) }) s.broker.PutAudioBuffer(m) default: // unknown message type; ignore } } func (a *SpecAnalyzer) init(s SpecAnSettings) { s.Resolution = min(max(s.Resolution, SpecResolutionMin), SpecResolutionMax) + 10 a.settings = s n := 1 << s.Resolution a.temp = specTemp{ power: [2][]float32{make([]float32, n/2), make([]float32, n/2)}, window: make([]float32, n), bitPerm: make([]int, n), tmpC: make([]complex128, n), tmp1: make([]float32, n), tmp2: make([]float32, n), } for i := range n { // Hanning window w := float32(0.5 * (1 - math.Cos(2*math.Pi*float64(i)/float64(n-1)))) a.temp.window[i] = w a.temp.normFactor += w // initialize the bit-reversal permutation table a.temp.bitPerm[i] = i } // compute the bit-reversal permutation for i, j := 1, 0; i < n; i++ { bit := n >> 1 for ; j&bit != 0; bit >>= 1 { j ^= bit } j ^= bit if i < j { a.temp.bitPerm[i], a.temp.bitPerm[j] = a.temp.bitPerm[j], a.temp.bitPerm[i] } } } func (s *SpecAnalyzer) update(buf sointu.AudioBuffer) *Spectrum { ret := s.broker.GetSpectrum() switch s.settings.ChnMode { case SpecChnModeSeparate: s.process(buf, 0) s.process(buf, 1) ret[0] = append(ret[0], s.temp.power[0]...) ret[1] = append(ret[1], s.temp.power[1]...) case SpecChnModeSum: s.process(buf, 0) s.process(buf, 1) ret[0] = append(ret[0], s.temp.power[0]...) vek32.Add_Inplace(ret[0], s.temp.power[1]) } // convert to decibels for c := range 2 { vek32.Log10_Inplace(ret[c]) vek32.MulNumber_Inplace(ret[c], 10) } return ret } func (sd *SpecAnalyzer) process(buf sointu.AudioBuffer, channel int) { for i := range buf { // de-interleave sd.temp.tmp1[i] = removeNaNsAndClamp(buf[i][channel]) } vek32.Mul_Inplace(sd.temp.tmp1, sd.temp.window) // apply windowing vek32.Gather_Into(sd.temp.tmp2, sd.temp.tmp1, sd.temp.bitPerm) // bit-reversal permutation // convert into complex numbers c := sd.temp.tmpC for i := range c { c[i] = complex(float64(sd.temp.tmp2[i]), 0) } // FFT n := len(c) for len := 2; len <= n; len <<= 1 { ang := 2 * math.Pi / float64(len) wlen := complex(math.Cos(ang), math.Sin(ang)) for i := 0; i < n; i += len { w := complex(1, 0) for j := 0; j < len/2; j++ { u := c[i+j] v := c[i+j+len/2] * w c[i+j] = u + v c[i+j+len/2] = u - v w *= wlen } } } // take absolute values of the first half, including nyquist frequency but excluding DC m := n / 2 t1 := sd.temp.tmp1[:m] t2 := sd.temp.tmp2[:m] for i := 0; i < m; i++ { t1[i] = float32(cmplx.Abs(c[1+i])) // do not include DC } // square the amplitudes to get power vek32.Mul_Into(t2, t1, t1) vek32.DivNumber_Inplace(t2, sd.temp.normFactor*sd.temp.normFactor) // normalize for windowing // Since we are using a real-valued FFT, we need to double the values except for Nyquist (and DC, but we don't have that here) vek32.MulNumber_Inplace(t2[:m-1], 2) // calculate difference to current spectrum and add back, multiplied by smoothing factor vek32.Sub_Inplace(t2, sd.temp.power[channel]) alpha := float32(math.Pow(2, float64(sd.settings.Smooth-SpecSpeedMax))) vek32.MulNumber_Inplace(t2, alpha) vek32.Add_Inplace(sd.temp.power[channel], t2) }