style: add comments to the public methods and members in the root package.

This commit is contained in:
vsariola 2021-08-30 20:34:56 +03:00
parent 60e4518230
commit a9b90c4db8
12 changed files with 162 additions and 9 deletions

View File

@ -1,10 +1,18 @@
package sointu
// AudioSink represents something where we can send audio e.g. audio output.
// WriteAudio should block if not ready to accept audio e.g. buffer full.
type AudioSink interface {
WriteAudio(buffer []float32) error
Close() error
}
// AudioContext represents the low-level audio drivers. There should be at most
// one AudioContext at a time. The interface is implemented at least by
// oto.OtoContext, but in future we could also mock it.
//
// AudioContext is used to create one or more AudioSinks with Output(); each can
// be used to output separate sound & closed when done.
type AudioContext interface {
Output() AudioSink
Close() error

View File

@ -7,6 +7,11 @@ import (
"math"
)
// Wav converts a stereo signal of 32-bit floats (L R L R..., length should be
// divisible by 2) into a valid WAV-file, returned as a []byte array.
//
// If pcm16 is set to true, the samples in the WAV-file will be 16-bit signed
// integers; otherwise the samples will be 32-bit floats
func Wav(buffer []float32, pcm16 bool) ([]byte, error) {
buf := new(bytes.Buffer)
wavHeader(len(buffer), pcm16, buf)
@ -17,6 +22,11 @@ func Wav(buffer []float32, pcm16 bool) ([]byte, error) {
return buf.Bytes(), nil
}
// Raw converts a stereo signal of 32-bit floats (L R L R..., length should be
// divisible by 2) into a raw audio file, returned as a []byte array.
//
// If pcm16 is set to true, the samples will be 16-bit signed integers;
// otherwise the samples will be 32-bit floats
func Raw(buffer []float32, pcm16 bool) ([]byte, error) {
buf := new(bytes.Buffer)
err := rawToBuffer(buffer, pcm16, buf)

View File

@ -8,6 +8,7 @@ type Instrument struct {
Units []Unit
}
// Copy makes a deep copy of an Instrument
func (instr *Instrument) Copy() Instrument {
units := make([]Unit, len(instr.Units))
for i, u := range instr.Units {

View File

@ -6,6 +6,7 @@ package sointu
// necessary amount when a new item is added, filling the unused slots with -1s.
type Order []int
// Get returns the value at index; or -1 is the index is out of range
func (s Order) Get(index int) int {
if index < 0 || index >= len(s) {
return -1
@ -13,6 +14,7 @@ func (s Order) Get(index int) int {
return s[index]
}
// Set sets the value at index; appending -1s until the slice is long enough.
func (s *Order) Set(index, value int) {
for len(*s) <= index {
*s = append(*s, -1)

View File

@ -9,6 +9,7 @@ import (
// Patch is simply a list of instruments used in a song
type Patch []Instrument
// Copy makes a deep copy of a Patch.
func (p Patch) Copy() Patch {
instruments := make([]Instrument, len(p))
for i, instr := range p {
@ -17,6 +18,8 @@ func (p Patch) Copy() Patch {
return instruments
}
// NumVoices returns the total number of voices used in the patch; summing the
// voices of every instrument
func (p Patch) NumVoices() int {
ret := 0
for _, i := range p {
@ -25,6 +28,8 @@ func (p Patch) NumVoices() int {
return ret
}
// NumDelayLines return the total number of delay lines used in the patch;
// summing the number of delay lines of every delay unit in every instrument
func (p Patch) NumDelayLines() int {
total := 0
for _, instr := range p {
@ -37,6 +42,8 @@ func (p Patch) NumDelayLines() int {
return total
}
// NumSyns return the total number of sync outputs used in the patch; summing
// the number of sync outputs of every sync unit in every instrument
func (p Patch) NumSyncs() int {
total := 0
for _, instr := range p {
@ -49,6 +56,11 @@ func (p Patch) NumSyncs() int {
return total
}
// FirstVoiceForInstrument returns the index of the first voice of given
// instrument. For example, if the Patch has three instruments (0, 1 and 2),
// with 1, 3, 2 voices, respectively, then FirstVoiceForInstrument(0) returns 0,
// FirstVoiceForInstrument(1) returns 1 and FirstVoiceForInstrument(2) returns
// 4. Essentially computes just the cumulative sum.
func (p Patch) FirstVoiceForInstrument(instrIndex int) int {
ret := 0
for _, t := range p[:instrIndex] {
@ -57,6 +69,10 @@ func (p Patch) FirstVoiceForInstrument(instrIndex int) int {
return ret
}
// InstrumentForVoice returns the instrument number for the given voice index.
// For example, if the Patch has three instruments (0, 1 and 2), with 1, 3, 2
// voices, respectively, then InstrumentForVoice(0) returns 0,
// InstrumentForVoice(1) returns 1 and InstrumentForVoice(3) returns 1.
func (p Patch) InstrumentForVoice(voice int) (int, error) {
if voice < 0 {
return 0, errors.New("voice cannot be negative")
@ -70,6 +86,11 @@ func (p Patch) InstrumentForVoice(voice int) (int, error) {
return 0, errors.New("voice number is beyond the total voices of an instrument")
}
// FindSendTarget searches the instrument number and unit index for a unit with
// the given id. Two units should never have the same id, but if they do, then
// the first match is returned. Id 0 is interpreted as "no id", thus searching
// for id 0 returns an error. Error is also returned if the searched id is not
// found.
func (p Patch) FindSendTarget(id int) (int, int, error) {
if id == 0 {
return 0, 0, errors.New("send targets unit id 0")
@ -84,6 +105,8 @@ func (p Patch) FindSendTarget(id int) (int, int, error) {
return 0, 0, fmt.Errorf("send targets an unit with id %v, could not find a unit with such an ID in the patch", id)
}
// ParamHintString returns a human readable string representing the current
// value of a given unit parameter.
func (p Patch) ParamHintString(instrIndex, unitIndex int, param string) string {
if instrIndex < 0 || instrIndex >= len(p) {
return ""

View File

@ -6,6 +6,7 @@ package sointu
// necessary amount when a new item is added, filling the unused slots with 1s.
type Pattern []byte
// Get returns the value at index; or 1 is the index is out of range
func (s Pattern) Get(index int) byte {
if index < 0 || index >= len(s) {
return 1
@ -13,6 +14,7 @@ func (s Pattern) Get(index int) byte {
return s[index]
}
// Set sets the value at index; appending 1s until the slice is long enough.
func (s *Pattern) Set(index int, value byte) {
for len(*s) <= index {
*s = append(*s, 1)

View File

@ -1,11 +1,16 @@
package sointu
// Score represents the arrangement of notes in a song; just a list of tracks
// and RowsPerPattern and Length (in patterns) to know the desired length of a
// song in rows. If any of the tracks is too short, all the notes outside the
// range should be just considered as holding the last note.
type Score struct {
Tracks []Track
RowsPerPattern int
RowsPerPattern int // number of rows in each pattern
Length int // length of the song, in number of patterns
}
// Copy makes a deep copy of a Score.
func (l Score) Copy() Score {
tracks := make([]Track, len(l.Tracks))
for i, t := range l.Tracks {
@ -14,6 +19,8 @@ func (l Score) Copy() Score {
return Score{Tracks: tracks, RowsPerPattern: l.RowsPerPattern, Length: l.Length}
}
// NumVoices returns the total number of voices used in the Score; summing the
// voices of every track
func (l Score) NumVoices() int {
ret := 0
for _, t := range l.Tracks {
@ -22,6 +29,11 @@ func (l Score) NumVoices() int {
return ret
}
// FirstVoiceForTrack returns the index of the first voice of given track. For
// example, if the Score has three tracks (0, 1 and 2), with 1, 3, 2 voices,
// respectively, then FirstVoiceForTrack(0) returns 0, FirstVoiceForTrack(1)
// returns 1 and FirstVoiceForTrack(2) returns 4. Essentially computes just the
// cumulative sum.
func (l Score) FirstVoiceForTrack(track int) int {
ret := 0
for _, t := range l.Tracks[:track] {
@ -30,6 +42,8 @@ func (l Score) FirstVoiceForTrack(track int) int {
return ret
}
// LengthInRows returns just RowsPerPattern * Length, as the length is the
// length in the number of patterns.
func (l Score) LengthInRows() int {
return l.RowsPerPattern * l.Length
}

14
song.go
View File

@ -4,6 +4,12 @@ import (
"errors"
)
// Song includes a Score(the arrangement of notes in the song in one or more
// tracks) and a Patch (the list of one or more instruments). Additionally, BPM
// and RowsPerBeat fields set how fast the song should be played. Currently, BPM
// is an integer as it offers already quite much granularity for controlling the
// playback speed, but this could be changed to a floating point in future if
// finer adjustments are necessary.
type Song struct {
BPM int
RowsPerBeat int
@ -11,16 +17,20 @@ type Song struct {
Patch Patch
}
// Copy makes a deep copy of a Score.
func (s *Song) Copy() Song {
return Song{BPM: s.BPM, RowsPerBeat: s.RowsPerBeat, Score: s.Score.Copy(), Patch: s.Patch.Copy()}
}
// Assuming 44100 Hz playback speed, return the number of samples of each row of
// the song.
func (s *Song) SamplesPerRow() int {
return 44100 * 60 / (s.BPM * s.RowsPerBeat)
}
// TBD: Where shall we put methods that work on pure domain types and have no dependencies
// e.g. Validate here
// Validate checks if the Song looks like a valid song: BPM > 0, one or more
// tracks, score uses less than or equal number of voices than patch. Not used
// much so we could probably get rid of this function.
func (s *Song) Validate() error {
if s.BPM < 1 {
return errors.New("BPM should be > 0")

View File

@ -6,17 +6,41 @@ import (
"math"
)
// Synth represents a state of a synthesizer, compiled from a Patch.
type Synth interface {
// Render tries to fill a stereo signal buffer with sound from the
// synthesizer, until either the buffer is full or a given number of
// timesteps is advanced. In the process, it also fills the syncbuffer with
// the values output by sync units. Normally, 1 sample = 1 unit of time, but
// speed modulations may change this. It returns the number of samples
// filled (! in stereo samples, so the buffer will have 2 * sample floats),
// the number of sync outputs written, the number of time steps time
// advanced, and a possible error.
Render(buffer []float32, syncBuffer []float32, maxtime int) (sample int, syncs int, time int, err error)
// Update recompiles a patch, but should maintain as much as possible of its
// state as reasonable. For example, filters should keep their state and
// delaylines should keep their content. Every change in the Patch triggers
// an Update and if the Patch would be started fresh every time, it would
// lead to very choppy audio.
Update(patch Patch) error
// Trigger triggers a note for a given voice. Called between synth.Renders.
Trigger(voice int, note byte)
// Release releases the currently playing note for a given voice. Called
// between synth.Renders.
Release(voice int)
}
// SynthService compiles a given Patch into a Synth, throwing errors if the
// Patch is malformed.
type SynthService interface {
Compile(patch Patch) (Synth, error)
}
// Render fills an stereo audio buffer using a Synth, disregarding all syncs and
// time limits.
func Render(synth Synth, buffer []float32) error {
s, _, _, err := synth.Render(buffer, nil, math.MaxInt32)
if err != nil {
@ -28,6 +52,10 @@ func Render(synth Synth, buffer []float32) error {
return nil
}
// Play plays the Song using a given Synth, returning the stereo audio buffer
// and the sync buffer as a result (and possible errors). This is a bit
// illogical as the Song contains already the Patch; this could be probably
// refactored to just accept a SynthService and a Song.
func Play(synth Synth, song Song) ([]float32, []float32, error) {
err := song.Validate()
if err != nil {

View File

@ -1,12 +1,31 @@
package sointu
// Track represents the patterns and orderlist for each track. Note that each
// track has its own patterns, so one track cannot use another tracks patterns.
// This makes the data more intuitive to humans, as the reusing of patterns over
// tracks is a rather rare occurence. However, the compiler will put all the
// patterns in one global table (identical patterns only appearing once), to
// optimize the runtime code.
type Track struct {
// NumVoices is the number of voices this track triggers, cycling through
// the voices. When this track triggers a new voice, the previous should be
// released.
NumVoices int
// Effect hints the GUI if this is more of an effect track than a note
// track: if true, e.g. the GUI can display the values as hexadecimals
// instead of note values.
Effect bool `yaml:",omitempty"`
// Order is a list telling which pattern comes in which order in the song in
// this track.
Order Order `yaml:",flow"`
// Patterns is a list of Patterns for this track.
Patterns []Pattern `yaml:",flow"`
}
// Copy makes a deep copy of a Track.
func (t *Track) Copy() Track {
order := make([]int, len(t.Order))
copy(order, t.Order)

32
unit.go
View File

@ -2,12 +2,34 @@ package sointu
// Unit is e.g. a filter, oscillator, envelope and its parameters
type Unit struct {
// Type is the type of the unit, e.g. "add","oscillator" or "envelope".
// Always in lowercase. "" type should be ignored, no invalid types should
// be used.
Type string `yaml:",omitempty"`
// ID should be a unique ID for this unit, used by SEND units to target
// specific units. ID = 0 means that no ID has been given to a unit and thus
// cannot be targeted by SENDs. When possible, units that are not targeted
// by any SENDs should be cleaned from having IDs, e.g. to keep the exported
// data clean.
ID int `yaml:",omitempty"`
// Parameters is a map[string]int of parameters of a unit. For example, for
// an oscillator, unit.Type == "oscillator" and unit.Parameters["attack"]
// could be 64. Most parameters are either limites to 0 and 1 (e.g. stereo
// parameters) or between 0 and 128, inclusive.
Parameters map[string]int `yaml:",flow"`
// VarArgs is a list containing the variable number arguments that some
// units require, most notably the DELAY units. For example, for a DELAY
// unit, VarArgs is the delaytimes, in samples, of the different delaylines
// in the unit.
VarArgs []int `yaml:",flow,omitempty"`
}
// When unit.Type = "oscillator", its unit.Parameter["Type"] tells the type of
// the oscillator. There is five different oscillator types, so these consts
// just enumerate them.
const (
Sine = iota
Trisaw = iota
@ -16,6 +38,7 @@ const (
Sample = iota
)
// Copy makes a deep copy of a unit.
func (u *Unit) Copy() Unit {
parameters := make(map[string]int)
for k, v := range u.Parameters {
@ -26,6 +49,12 @@ func (u *Unit) Copy() Unit {
return Unit{Type: u.Type, Parameters: parameters, VarArgs: varArgs, ID: u.ID}
}
// StackChange returns how this unit will affect the signal stack. "pop" and
// "addp" and such will consume the topmost signal, and thus return -1 (or -2,
// if the unit is a stereo unit). On the other hand, "oscillator" and "envelope"
// will produce a signal, and thus return 1 (or 2, if the unit is a stereo
// unit). Effects that just change the topmost signal and will not change the
// number of signals on the stack and thus return 0.
func (u *Unit) StackChange() int {
switch u.Type {
case "addp", "mulp", "pop", "out", "outaux", "aux":
@ -42,6 +71,9 @@ func (u *Unit) StackChange() int {
return 0
}
// StackNeed returns the number of signals that should be on the stack before
// this unit is executed. Used to prevent stack underflow. Units producing
// signals do not care what is on the stack before and will return 0.
func (u *Unit) StackNeed() int {
switch u.Type {
case "", "envelope", "oscillator", "noise", "receive", "loadnote", "loadval", "in":

View File

@ -134,6 +134,10 @@ var UnitTypes = map[string]([]UnitParameter){
"sync": []UnitParameter{},
}
// Ports is static map allowing quickly finding the parameters of a unit that
// can be modulated. This is populated based on the UnitTypes list during
// init(). Thus, should be immutable, but Go not supporting that, then this will
// have to suffice: DO NOT EVER CHANGE THIS MAP.
var Ports = make(map[string]([]string))
func init() {