Rewrote most of the synth to better support stereo signals and polyphony. VSTi removed as there is no plan to update the VSTi to support the new features.

The stereo opcode variants have bit 1 of the command stream set. The polyphony is split into two parts: 1) polyphony, meaning that voices reuse the same opcodes; 2) multitrack voices, meaning that a track triggers more than voice. They both can be flexible defined in any combinations: for example voice 1 and 2 can be triggered by track 1 and use instrument 1, and voice 3 by track 2/instrument 2 and voice 4 by track 3/instrument 2. This is achieved through the use of bitmasks: in the aforementioned example, bit 1 of su_voicetrack_bitmask would be set, meaning "the voice after voice #1 will be triggered by the same track". On the other hand, bits 1 and 3 of su_polyphony_bitmask would be set to indicate that "the voices after #1 and #3 will reuse the same instruments".
This commit is contained in:
Veikko Sariola
2020-05-16 08:25:52 +03:00
parent 5c1b87f254
commit 78d4cd50e8
238 changed files with 3460 additions and 21774 deletions

351
src/opcodes/effects.asm Normal file
View File

@ -0,0 +1,351 @@
;-------------------------------------------------------------------------------
; DISTORT Tick
;-------------------------------------------------------------------------------
; Input: st0 : x - input value
; Output: st0 : x*a/(1-a+(2*a-1)*abs(x))
; where x is clamped first
;-------------------------------------------------------------------------------
%if DISTORT_ID > -1
SECT_TEXT(sudistrt)
EXPORT MANGLE_FUNC(su_op_distort,0)
%ifdef INCLUDE_STEREO_DISTORT
jnc su_op_distort_mono
call su_stereo_filterhelper
%define INCLUDE_STEREO_FILTERHELPER
su_op_distort_mono:
%endif
fld dword [edx+su_distort_ports.drive]
%define SU_INCLUDE_WAVESHAPER
; flow into waveshaper
%endif
%ifdef SU_INCLUDE_WAVESHAPER
su_waveshaper:
fxch ; x a
call MANGLE_FUNC(su_clip_op,0)
fxch ; a x' (from now on just called x)
fld st0 ; a a x
fsub dword [c_0_5] ; a-.5 a x
fadd st0 ; 2*a-1 a x
fld st2 ; x 2*a-1 a x
fabs ; abs(x) 2*a-1 a x
fmulp st1 ; (2*a-1)*abs(x) a x
fld1 ; 1 (2*a-1)*abs(x) a x
faddp st1 ; 1+(2*a-1)*abs(x) a x
fsub st1 ; 1-a+(2*a-1)*abs(x) a x
fdivp st1, st0 ; a/(1-a+(2*a-1)*abs(x)) x
fmulp st1 ; x*a/(1-a+(2*a-1)*abs(x))
ret
%define SU_INCLUDE_CLIP
%endif ; SU_USE_DST
;-------------------------------------------------------------------------------
; HOLD Tick
;-------------------------------------------------------------------------------
%if HOLD_ID > -1
SECT_TEXT(suhold)
EXPORT MANGLE_FUNC(su_op_hold,0)
%ifdef INCLUDE_STEREO_HOLD
jnc su_op_hold_mono
call su_stereo_filterhelper
%define INCLUDE_STEREO_FILTERHELPER
su_op_hold_mono:
%endif
fld dword [edx+su_hold_ports.freq] ; f x
fmul st0, st0 ; f^2 x
fchs ; -f^2 x
fadd dword [WRK+su_hold_wrk.phase] ; p-f^2 x
fst dword [WRK+su_hold_wrk.phase] ; p <- p-f^2
fldz ; 0 p x
fucomip st1 ; p x
fstp dword [esp-4] ; t=p, x
jc short su_op_hold_holding ; if (0 < p) goto holding
fld1 ; 1 x
fadd dword [esp-4] ; 1+t x
fstp dword [WRK+su_hold_wrk.phase] ; x
fst dword [WRK+su_hold_wrk.holdval] ; save holded value
ret ; x
su_op_hold_holding:
fstp st0 ;
fld dword [WRK+su_hold_wrk.holdval] ; x
ret
%endif ; HOLD_ID > -1
;-------------------------------------------------------------------------------
; su_op_filter: perform low/high/band-pass filtering on the signal
;-------------------------------------------------------------------------------
; Input: WRK : pointer to unit workspace
; VAL : pointer to unit values as bytes
; ecx : pointer to global workspace
; st0 : signal
; Output: st0 : filtered signal
; Dirty: eax, edx
;-------------------------------------------------------------------------------
%if FILTER_ID > -1
SECT_TEXT(sufilter)
EXPORT MANGLE_FUNC(su_op_filter,0)
lodsb ; load the flags to al
%ifdef INCLUDE_STEREO_FILTER
jnc su_op_filter_mono
call su_stereo_filterhelper
%define INCLUDE_STEREO_FILTERHELPER
su_op_filter_mono:
%endif
fld dword [edx+su_filter_ports.res] ; r x
fld dword [edx+su_filter_ports.freq]; f r x
fmul st0, st0 ; f2 x (square the input so we never get negative and also have a smoother behaviour in the lower frequencies)
fst dword [esp-4] ; f2 r x
fmul dword [WRK+su_filter_wrk.band] ; f2*b r x
fadd dword [WRK+su_filter_wrk.low] ; f2*b+l r x
fst dword [WRK+su_filter_wrk.low] ; l'=f2*b+l r x
fsubp st2, st0 ; r x-l'
fmul dword [WRK+su_filter_wrk.band] ; r*b x-l'
fsubp st1, st0 ; x-l'-r*b
fst dword [WRK+su_filter_wrk.high] ; h'=x-l'-r*b
fmul dword [esp-4] ; f2*h'
fadd dword [WRK+su_filter_wrk.band] ; f2*h'+b
fstp dword [WRK+su_filter_wrk.band] ; b'=f2*h'+b
fldz ; 0
%ifdef INCLUDE_LOWPASS
test al, byte LOWPASS
jz short su_op_filter_skiplowpass
fadd dword [WRK+su_filter_wrk.low]
su_op_filter_skiplowpass:
%endif
%ifdef INCLUDE_BANDPASS
test al, byte BANDPASS
jz short su_op_filter_skipbandpass
fadd dword [WRK+su_filter_wrk.band]
su_op_filter_skipbandpass:
%endif
%ifdef INCLUDE_HIGHPASS
test al, byte HIGHPASS
jz short su_op_filter_skiphighpass
fadd dword [WRK+su_filter_wrk.high]
su_op_filter_skiphighpass:
%endif
%ifdef INCLUDE_NEGBANDPASS
test al, byte NEGBANDPASS
jz short su_op_filter_skipnegbandpass
fsub dword [WRK+su_filter_wrk.band]
su_op_filter_skipnegbandpass:
%endif
%ifdef INCLUDE_NEGHIGHPASS
test al, byte NEGHIGHPASS
jz short su_op_filter_skipneghighpass
fsub dword [WRK+su_filter_wrk.high]
su_op_filter_skipneghighpass:
%endif
ret
%endif ; SU_INCLUDE_FILTER
;-------------------------------------------------------------------------------
; su_clip function
;-------------------------------------------------------------------------------
; Input: st0 : x
; Output: st0 : min(max(x,-1),1)
;-------------------------------------------------------------------------------
%if CLIP_ID > -1
%define SU_INCLUDE_CLIP
%endif
%ifdef SU_INCLUDE_CLIP
SECT_TEXT(suclip)
EXPORT MANGLE_FUNC(su_clip_op,0)
fld1 ; 1 x a
fucomi st1 ; if (1 <= x)
jbe short su_clip_do ; goto Clip_Do
fchs ; -1 x a
fucomi st1 ; if (-1 < x)
fcmovb st0, st1 ; x x a
su_clip_do:
fstp st1 ; x' a, where x' = clamp(x)
ret
%endif ; SU_INCLUDE_CLIP
;-------------------------------------------------------------------------------
; PAN Tick
;-------------------------------------------------------------------------------
; Input: WRK : pointer to unit workspace
; VAL : pointer to unit values as bytes
; ecx : pointer to global workspace
; st0 : s, the signal
; Output: st0 : s*(1-p), where p is the panning in [0,1] range
; st1 : s*p
; Dirty: eax, edx
;-------------------------------------------------------------------------------
%if PAN_ID > -1
SECT_TEXT(supan)
%ifdef INCLUDE_STEREO_PAN
EXPORT MANGLE_FUNC(su_op_pan,0)
jc su_op_pan_do ; this time, if this is mono op...
fld st0 ; ...we duplicate the mono into stereo first
su_op_pan_do:
fld dword [edx+su_pan_ports.panning] ; p l r
fld1 ; 1 p l r
fsub st1 ; 1-p p l r
fmulp st2 ; p (1-p)*l r
fmulp st2 ; (1-p)*l p*r
ret
%else ; ifndef INCLUDE_STEREO_PAN
EXPORT MANGLE_FUNC(su_op_pan,0)
fld dword [edx+su_pan_ports.panning] ; p s
fmul st1 ; p*s s
fsub st1, st0 ; p*s s-p*s
; Equal to
; s*p s*(1-p)
fxch ; s*(1-p) s*p SHOULD PROBABLY DELETE, WHY BOTHER
ret
%endif ; INCLUDE_STEREO_PAN
%endif ; SU_USE_PAN
;-------------------------------------------------------------------------------
; su_stereo_filterhelper: moves the workspace to next, does the filtering for
; right channel (pulling the calling address from stack), rewinds the
; workspace and returns
;-------------------------------------------------------------------------------
%ifdef INCLUDE_STEREO_FILTERHELPER
su_stereo_filterhelper:
add WRK, 16
fxch ; r l
call dword [esp] ; call whoever called me...
fxch ; l r
sub WRK, 16 ; move WRK back to where it was
ret
%endif
;-------------------------------------------------------------------------------
; Delay Tick
;-------------------------------------------------------------------------------
; Pseudocode:
; q = dr*x
; for (i = 0;i < count;i++)
; s = b[(t-delaytime[i+offset])&65535]
; q += s
; o[i] = o[i]*da+s*(1-da)
; b[t] = f*o[i] +p^2*x
; Perform dc-filtering q and output
;-------------------------------------------------------------------------------
%if DELAY_ID > -1
SECT_TEXT(sudelay)
EXPORT MANGLE_FUNC(su_op_delay,0)
lodsb ; eax = delay index
mov edi, eax
lodsb ; eax = delay count
%ifdef INCLUDE_STEREO_DELAY
jnc su_op_delay_mono
fxch
call su_op_delay_mono ; do right delay
fxch
add edi, eax ; the second delay is done with the delay time index added by count
su_op_delay_mono:
%endif
pushad
mov ebx, edi; ugly register juggling, refactor
%ifdef DELAY_NOTE_SYNC
test ebx, ebx ; note s
jne su_op_delay_skipnotesync
fld1
fild dword [ecx+su_unit.size-su_voice.workspace+su_voice.note]
fmul dword [c_i12]
call MANGLE_FUNC(su_power,0)
fmul dword [c_freq_normalize] ; // normalize
fdivp st1, st0 ; // invert to get numer of samples
fistp word [MANGLE_DATA(su_delay_times)] ; store current comb size
su_op_delay_skipnotesync:
%endif
kmDLL_func_process:
mov ecx, eax ;// ecx is the number of parallel delays
mov WRK, dword [MANGLE_DATA(su_delay_buffer_ofs)] ;// ebp is current delay
fld st0 ; x x
fmul dword [edx+su_delay_ports.dry] ; dr*x x
fxch ; x dr*x
fmul dword [edx+su_delay_ports.pregain] ; p*x dr*x
fmul dword [edx+su_delay_ports.pregain] ; p^2*x dr*x
kmDLL_func_loop:
mov edi, dword [WRK + su_delayline_wrk.time]
inc edi
and edi, MAX_DELAY-1
mov dword [WRK + su_delayline_wrk.time],edi
movzx esi, word [MANGLE_DATA(su_delay_times)+ebx*2] ; esi = comb size from the delay times table
mov eax, edi
sub eax, esi
and eax, MAX_DELAY-1
fld dword [WRK+eax*4+su_delayline_wrk.buffer] ; s p^2*x dr*x, where s is the sample from delay buffer
;// add comb output to current output
fadd st2, st0 ; s p^2*x dr*x+s
fld1 ; 1 s p^2*x dr*x+s
fsub dword [edx+su_delay_ports.damp] ; 1-da s p^2*x dr*x+s
fmulp st1, st0 ; s*(1-da) p^2*x dr*x+s
fld dword [edx+su_delay_ports.damp] ; da s*(1-da) p^2*x dr*x+s
fmul dword [WRK+su_delayline_wrk.filtstate] ; o*da s*(1-da) p^2*x dr*x+s, where o is stored
faddp st1, st0 ; o*da+s*(1-da) p^2*x dr*x+s
fst dword [WRK+su_delayline_wrk.filtstate] ; o'=o*da+s*(1-da), o' p^2*x dr*x+s
fmul dword [edx+su_delay_ports.feedback] ; f*o' p^2*x dr*x+s
fadd st0, st1 ; f*o'+p^2*x p^2*x dr*x+s
fstp dword [WRK+edi*4+su_delayline_wrk.buffer]; save f*o'+p^2*x to delay buffer
inc ebx ;// go to next delay lenkmh index
add WRK, su_delayline_wrk.size ;// go to next delay
mov dword [MANGLE_DATA(su_delay_buffer_ofs)], WRK ;// store next delay offset
loopne kmDLL_func_loop
fstp st0 ; dr*x+s1+s2+s3+...
; DC-filtering
sub WRK, su_delayline_wrk.size ; the reason to use the last su_delayline_wrk instead of su_delay_wrk is that su_delay_wrk is wiped by retriggering
fld dword [WRK+su_delayline_wrk.dcout] ; o s
fmul dword [c_dc_const] ; c*o s
fsub dword [WRK+su_delayline_wrk.dcin] ; c*o-i s
fxch ; s c*o-i
fst dword [WRK+su_delayline_wrk.dcin] ; i'=s, s c*o-i
faddp st1 ; s+c*o-i
fadd dword [c_0_5] ;// add and sub small offset to prevent denormalization
fsub dword [c_0_5]
fst dword [WRK+su_delayline_wrk.dcout] ; o'=s+c*o-i
popad
ret
;-------------------------------------------------------------------------------
; Delay data
;-------------------------------------------------------------------------------
SECT_BSS(sudelbuf)
EXPORT MANGLE_DATA(su_delay_buffer_ofs)
resd 1
EXPORT MANGLE_DATA(su_delay_buffer)
resb NUM_DELAY_LINES*su_delayline_wrk.size
SECT_DATA(suconst)
%ifndef C_DC_CONST
c_dc_const dd 0.99609375 ; R = 1 - (pi*2 * frequency /samplerate)
%define C_DC_CONST
%endif
%ifndef C_FREQ_NORMALIZE
c_freq_normalize dd 0.000092696138 ; // 220.0/(2^(69/12)) / 44100.0
%define C_FREQ_NORMALIZE
%endif
%endif ; DELAY_ID > -1