mirror of
https://github.com/mborgerding/kissfft.git
synced 2025-05-27 21:20:27 -04:00
162 lines
3.6 KiB
Python
Executable File
162 lines
3.6 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# Copyright (c) 2003-2019, Mark Borgerding. All rights reserved.
|
|
# This file is part of KISS FFT - https://github.com/mborgerding/kissfft
|
|
#
|
|
# SPDX-License-Identifier: BSD-3-Clause
|
|
# See COPYING file for more information.
|
|
from __future__ import division,print_function
|
|
import math
|
|
import sys
|
|
import os
|
|
import random
|
|
import struct
|
|
import getopt
|
|
import numpy
|
|
|
|
pi=math.pi
|
|
e=math.e
|
|
|
|
doreal=0
|
|
|
|
datatype = os.environ.get('DATATYPE','float')
|
|
|
|
util = '../tools/fft_' + datatype
|
|
minsnr=90
|
|
if datatype == 'double':
|
|
fmt='d'
|
|
elif datatype=='int16_t':
|
|
fmt='h'
|
|
minsnr=10
|
|
elif datatype=='int32_t':
|
|
fmt='i'
|
|
elif datatype=='simd':
|
|
fmt='4f'
|
|
sys.stderr.write('testkiss.py does not yet test simd')
|
|
sys.exit(0)
|
|
elif datatype=='float':
|
|
fmt='f'
|
|
else:
|
|
sys.stderr.write('unrecognized datatype %s\n' % datatype)
|
|
sys.exit(1)
|
|
|
|
|
|
def dopack(x,cpx=1):
|
|
x = numpy.reshape( x, ( numpy.size(x),) )
|
|
|
|
if cpx:
|
|
s = ''.join( [ struct.pack(fmt*2,c.real,c.imag) for c in x ] )
|
|
else:
|
|
s = ''.join( [ struct.pack(fmt,c.real) for c in x ] )
|
|
return s
|
|
|
|
def dounpack(x,cpx):
|
|
uf = fmt * ( len(x) // struct.calcsize(fmt) )
|
|
s = struct.unpack(uf,x)
|
|
if cpx:
|
|
return numpy.array(s[::2]) + numpy.array( s[1::2] )*1j
|
|
else:
|
|
return numpy.array(s )
|
|
|
|
def make_random(dims=[1]):
|
|
res = []
|
|
for i in range(dims[0]):
|
|
if len(dims)==1:
|
|
r=random.uniform(-1,1)
|
|
if doreal:
|
|
res.append( r )
|
|
else:
|
|
i=random.uniform(-1,1)
|
|
res.append( complex(r,i) )
|
|
else:
|
|
res.append( make_random( dims[1:] ) )
|
|
return numpy.array(res)
|
|
|
|
def flatten(x):
|
|
ntotal = numpy.size(x)
|
|
return numpy.reshape(x,(ntotal,))
|
|
|
|
def randmat( ndims ):
|
|
dims=[]
|
|
for i in range( ndims ):
|
|
curdim = int( random.uniform(2,5) )
|
|
if doreal and i==(ndims-1):
|
|
curdim = int(curdim/2)*2 # force even last dimension if real
|
|
dims.append( curdim )
|
|
return make_random(dims )
|
|
|
|
def test_fft(ndims):
|
|
x=randmat( ndims )
|
|
|
|
if doreal:
|
|
xver = numpy.fft.rfftn(x)
|
|
else:
|
|
xver = numpy.fft.fftn(x)
|
|
|
|
x2=dofft(x,doreal)
|
|
err = xver - x2
|
|
errf = flatten(err)
|
|
xverf = flatten(xver)
|
|
errpow = numpy.vdot(errf,errf)+1e-10
|
|
sigpow = numpy.vdot(xverf,xverf)+1e-10
|
|
snr = 10*math.log10(abs(sigpow/errpow) )
|
|
print( 'SNR (compared to NumPy) : {0:.1f}dB'.format( float(snr) ) )
|
|
|
|
if snr<minsnr:
|
|
print( 'xver=',xver )
|
|
print( 'x2=',x2)
|
|
print( 'err',err)
|
|
sys.exit(1)
|
|
|
|
def dofft(x,isreal):
|
|
dims=list( numpy.shape(x) )
|
|
x = flatten(x)
|
|
|
|
scale=1
|
|
if datatype=='int16_t':
|
|
x = 32767 * x
|
|
scale = len(x) / 32767.0
|
|
elif datatype=='int32_t':
|
|
x = 2147483647.0 * x
|
|
scale = len(x) / 2147483647.0
|
|
|
|
cmd='%s -n ' % util
|
|
cmd += ','.join([str(d) for d in dims])
|
|
if doreal:
|
|
cmd += ' -R '
|
|
|
|
print( cmd)
|
|
|
|
from subprocess import Popen,PIPE
|
|
p = Popen(cmd,shell=True,stdin=PIPE,stdout=PIPE )
|
|
|
|
p.stdin.write( dopack( x , isreal==False ) )
|
|
p.stdin.close()
|
|
|
|
res = dounpack( p.stdout.read() , 1 )
|
|
if doreal:
|
|
dims[-1] = int( dims[-1]/2 ) + 1
|
|
|
|
res = scale * res
|
|
|
|
p.wait()
|
|
return numpy.reshape(res,dims)
|
|
|
|
def main():
|
|
opts,args = getopt.getopt(sys.argv[1:],'r')
|
|
opts=dict(opts)
|
|
|
|
global doreal
|
|
doreal = opts.has_key('-r')
|
|
|
|
if doreal:
|
|
print( 'Testing multi-dimensional real FFTs')
|
|
else:
|
|
print( 'Testing multi-dimensional FFTs')
|
|
|
|
for dim in range(1,4):
|
|
test_fft( dim )
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|