kissfft/kissfft.hh
Ralph Tandetzky b10fb43644 Removed macro-like looking private methods of kissfft class.
All uses of these function were replaced by their implementation (which is mostly easier to read than the functions themselves).
2016-04-21 12:36:57 +02:00

286 lines
9.5 KiB
C++

#ifndef KISSFFT_CLASS_HH
#define KISSFFT_CLASS_HH
#include <complex>
#include <vector>
namespace kissfft_utils {
template <typename T_scalar>
struct traits
{
typedef T_scalar scalar_type;
typedef std::complex<scalar_type> cpx_type;
static void fill_twiddles( cpx_type * dst,
std::size_t nfft,
bool inverse )
{
const T_scalar phinc = (inverse?2:-2)* acos( (T_scalar) -1) / nfft;
for (std::size_t i=0;i<nfft;++i)
dst[i] = std::exp( cpx_type(0,i*phinc) );
}
static void prepare(
std::vector< cpx_type > & _twiddles,
std::size_t nfft,
bool inverse,
std::vector<std::size_t> & stageRadix,
std::vector<std::size_t> & stageRemainder )
{
_twiddles.resize(nfft);
fill_twiddles( &_twiddles[0],nfft,inverse);
//factorize
//start factoring out 4's, then 2's, then 3,5,7,9,...
std::size_t n= nfft;
std::size_t p=4;
do {
while (n % p) {
switch (p) {
case 4: p = 2; break;
case 2: p = 3; break;
default: p += 2; break;
}
if (p*p>n)
p = n;// no more factors
}
n /= p;
stageRadix.push_back(p);
stageRemainder.push_back(n);
}while(n>1);
}
};
}
template <typename T_Scalar,
typename T_traits=kissfft_utils::traits<T_Scalar>
>
class kissfft
{
public:
typedef T_traits traits_type;
typedef typename traits_type::scalar_type scalar_type;
typedef typename traits_type::cpx_type cpx_type;
kissfft( std::size_t nfft,
bool inverse )
:_nfft(nfft)
,_inverse(inverse)
{
T_traits::prepare(_twiddles, _nfft,_inverse ,_stageRadix, _stageRemainder);
}
void transform( const cpx_type * src,
cpx_type * dst ) const
{
kf_work(0, dst, src, 1,1);
}
private:
void kf_work( std::size_t stage,
cpx_type * Fout,
const cpx_type * f,
std::size_t fstride,
std::size_t in_stride) const
{
const std::size_t p = _stageRadix[stage];
const std::size_t m = _stageRemainder[stage];
cpx_type * const Fout_beg = Fout;
cpx_type * const Fout_end = Fout + p*m;
if (m==1) {
do{
*Fout = *f;
f += fstride*in_stride;
}while(++Fout != Fout_end );
}else{
do{
// recursive call:
// DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
// each one takes a decimated version of the input
kf_work(stage+1, Fout , f, fstride*p,in_stride);
f += fstride*in_stride;
}while( (Fout += m) != Fout_end );
}
Fout=Fout_beg;
// recombine the p smaller DFTs
switch (p) {
case 2: kf_bfly2(Fout,fstride,m); break;
case 3: kf_bfly3(Fout,fstride,m); break;
case 4: kf_bfly4(Fout,fstride,m); break;
case 5: kf_bfly5(Fout,fstride,m); break;
default: kf_bfly_generic(Fout,fstride,m,p); break;
}
}
void kf_bfly2( cpx_type * Fout, const size_t fstride, std::size_t m) const
{
for (std::size_t k=0;k<m;++k) {
const cpx_type t = Fout[m+k] * _twiddles[k*fstride];
Fout[m+k] = Fout[k] - t;
Fout[k] += t;
}
}
void kf_bfly4( cpx_type * Fout, const std::size_t fstride, const std::size_t m) const
{
cpx_type scratch[7];
const scalar_type negative_if_inverse = _inverse ? -1 : +1;
for (std::size_t k=0;k<m;++k) {
scratch[0] = Fout[k+ m] * _twiddles[k*fstride ];
scratch[1] = Fout[k+2*m] * _twiddles[k*fstride*2];
scratch[2] = Fout[k+3*m] * _twiddles[k*fstride*3];
scratch[5] = Fout[k] - scratch[1];
Fout[k] += scratch[1];
scratch[3] = scratch[0] + scratch[2];
scratch[4] = scratch[0] - scratch[2];
scratch[4] = cpx_type( scratch[4].imag()*negative_if_inverse ,
-scratch[4].real()*negative_if_inverse );
Fout[k+2*m] = Fout[k] - scratch[3];
Fout[k ]+= scratch[3];
Fout[k+ m] = scratch[5] + scratch[4];
Fout[k+3*m] = scratch[5] - scratch[4];
}
}
void kf_bfly3( cpx_type * Fout, const std::size_t fstride, const std::size_t m) const
{
std::size_t k=m;
const std::size_t m2 = 2*m;
const cpx_type *tw1,*tw2;
cpx_type scratch[5];
const cpx_type epi3 = _twiddles[fstride*m];
tw1=tw2=&_twiddles[0];
do{
scratch[1] = Fout[m] * *tw1;
scratch[2] = Fout[m2] * *tw2;
scratch[3] = scratch[1] + scratch[2];
scratch[0] = scratch[1] - scratch[2];
tw1 += fstride;
tw2 += fstride*2;
Fout[m] = Fout[0] - scratch[3]*scalar_type(0.5);
scratch[0] *= epi3.imag();
Fout[0] += scratch[3];
Fout[m2] = cpx_type( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
Fout[m] += cpx_type( -scratch[0].imag(),scratch[0].real() );
++Fout;
}while(--k);
}
void kf_bfly5( cpx_type * Fout, const std::size_t fstride, const std::size_t m) const
{
cpx_type *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
cpx_type scratch[13];
const cpx_type ya = _twiddles[fstride*m];
const cpx_type yb = _twiddles[fstride*2*m];
Fout0=Fout;
Fout1=Fout0+m;
Fout2=Fout0+2*m;
Fout3=Fout0+3*m;
Fout4=Fout0+4*m;
for ( std::size_t u=0; u<m; ++u ) {
scratch[0] = *Fout0;
scratch[1] = *Fout1 * _twiddles[ u*fstride];
scratch[2] = *Fout2 * _twiddles[2*u*fstride];
scratch[3] = *Fout3 * _twiddles[3*u*fstride];
scratch[4] = *Fout4 * _twiddles[4*u*fstride];
scratch[7] = scratch[1] + scratch[4];
scratch[10]= scratch[1] - scratch[4];
scratch[8] = scratch[2] + scratch[3];
scratch[9] = scratch[2] - scratch[3];
*Fout0 += scratch[7];
*Fout0 += scratch[8];
scratch[5] = scratch[0] + cpx_type(
scratch[7].real()*ya.real() + scratch[8].real()*yb.real(),
scratch[7].imag()*ya.real() + scratch[8].imag()*yb.real()
);
scratch[6] = cpx_type(
scratch[10].imag()*ya.imag() + scratch[9].imag()*yb.imag(),
-scratch[10].real()*ya.imag() - scratch[9].real()*yb.imag()
);
*Fout1 = scratch[5] - scratch[6];
*Fout4 = scratch[5] + scratch[6];
scratch[11] = scratch[0] +
cpx_type(
scratch[7].real()*yb.real() + scratch[8].real()*ya.real(),
scratch[7].imag()*yb.real() + scratch[8].imag()*ya.real()
);
scratch[12] = cpx_type(
-scratch[10].imag()*yb.imag() + scratch[9].imag()*ya.imag(),
scratch[10].real()*yb.imag() - scratch[9].real()*ya.imag()
);
*Fout2 = scratch[11] + scratch[12];
*Fout3 = scratch[11] - scratch[12];
++Fout0;
++Fout1;
++Fout2;
++Fout3;
++Fout4;
}
}
/* perform the butterfly for one stage of a mixed radix FFT */
void kf_bfly_generic(
cpx_type * Fout,
const size_t fstride,
std::size_t m,
std::size_t p
) const
{
const cpx_type * twiddles = &_twiddles[0];
cpx_type scratchbuf[p];
for ( std::size_t u=0; u<m; ++u ) {
std::size_t k = u;
for ( std::size_t q1=0 ; q1<p ; ++q1 ) {
scratchbuf[q1] = Fout[ k ];
k += m;
}
k=u;
for ( std::size_t q1=0 ; q1<p ; ++q1 ) {
std::size_t twidx=0;
Fout[ k ] = scratchbuf[0];
for ( std::size_t q=1;q<p;++q ) {
twidx += fstride * k;
if (twidx>=_nfft)
twidx-=_nfft;
Fout[ k ] += scratchbuf[q] * twiddles[twidx];
}
k += m;
}
}
}
std::size_t _nfft;
bool _inverse;
std::vector<cpx_type> _twiddles;
std::vector<std::size_t> _stageRadix;
std::vector<std::size_t> _stageRemainder;
};
#endif