mirror of
https://github.com/mborgerding/kissfft.git
synced 2025-06-03 17:18:11 -04:00
In order to use constants or trigonometric functions with a type other than double, a suffix ('f' for float or 'l' for long double) has to be used in C. This commit adds a preprocessor macro 'kiss_fft_suffix' which can be set to either 'f' or 'l' and which will be added to floating point constants and to the trigonometric functions (sin and cos). Without this suffix, the code will use a too high precision for float and a too low precision for long double.
154 lines
4.6 KiB
C
154 lines
4.6 KiB
C
/*
|
|
* Copyright (c) 2003-2004, Mark Borgerding. All rights reserved.
|
|
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
* See COPYING file for more information.
|
|
*/
|
|
|
|
#include "kiss_fftr.h"
|
|
#include "_kiss_fft_guts.h"
|
|
|
|
struct kiss_fftr_state{
|
|
kiss_fft_cfg substate;
|
|
kiss_fft_cpx * tmpbuf;
|
|
kiss_fft_cpx * super_twiddles;
|
|
#ifdef USE_SIMD
|
|
void * pad;
|
|
#endif
|
|
};
|
|
|
|
kiss_fftr_cfg kiss_fftr_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem)
|
|
{
|
|
int i;
|
|
kiss_fftr_cfg st = NULL;
|
|
size_t subsize = 0, memneeded;
|
|
|
|
if (nfft & 1) {
|
|
fprintf(stderr,"Real FFT optimization must be even.\n");
|
|
return NULL;
|
|
}
|
|
nfft >>= 1;
|
|
|
|
kiss_fft_alloc (nfft, inverse_fft, NULL, &subsize);
|
|
memneeded = sizeof(struct kiss_fftr_state) + subsize + sizeof(kiss_fft_cpx) * ( nfft * 3 / 2);
|
|
|
|
if (lenmem == NULL) {
|
|
st = (kiss_fftr_cfg) KISS_FFT_MALLOC (memneeded);
|
|
} else {
|
|
if (*lenmem >= memneeded)
|
|
st = (kiss_fftr_cfg) mem;
|
|
*lenmem = memneeded;
|
|
}
|
|
if (!st)
|
|
return NULL;
|
|
|
|
st->substate = (kiss_fft_cfg) (st + 1); /*just beyond kiss_fftr_state struct */
|
|
st->tmpbuf = (kiss_fft_cpx *) (((char *) st->substate) + subsize);
|
|
st->super_twiddles = st->tmpbuf + nfft;
|
|
kiss_fft_alloc(nfft, inverse_fft, st->substate, &subsize);
|
|
|
|
for (i = 0; i < nfft/2; ++i) {
|
|
kiss_fft_scalar_one phase =
|
|
KISS_ADD_SUFFIX(-3.14159265358979323846264338327) * ((kiss_fft_scalar_one) (i+1) / nfft + .5);
|
|
if (inverse_fft)
|
|
phase *= -1;
|
|
kf_cexp (st->super_twiddles+i,phase);
|
|
}
|
|
return st;
|
|
}
|
|
|
|
void kiss_fftr(kiss_fftr_cfg st,const kiss_fft_scalar *timedata,kiss_fft_cpx *freqdata)
|
|
{
|
|
/* input buffer timedata is stored row-wise */
|
|
int k,ncfft;
|
|
kiss_fft_cpx fpnk,fpk,f1k,f2k,tw,tdc;
|
|
|
|
if ( st->substate->inverse) {
|
|
fprintf(stderr,"kiss fft usage error: improper alloc\n");
|
|
exit(1);
|
|
}
|
|
|
|
ncfft = st->substate->nfft;
|
|
|
|
/*perform the parallel fft of two real signals packed in real,imag*/
|
|
kiss_fft( st->substate , (const kiss_fft_cpx*)timedata, st->tmpbuf );
|
|
/* The real part of the DC element of the frequency spectrum in st->tmpbuf
|
|
* contains the sum of the even-numbered elements of the input time sequence
|
|
* The imag part is the sum of the odd-numbered elements
|
|
*
|
|
* The sum of tdc.r and tdc.i is the sum of the input time sequence.
|
|
* yielding DC of input time sequence
|
|
* The difference of tdc.r - tdc.i is the sum of the input (dot product) [1,-1,1,-1...
|
|
* yielding Nyquist bin of input time sequence
|
|
*/
|
|
|
|
tdc.r = st->tmpbuf[0].r;
|
|
tdc.i = st->tmpbuf[0].i;
|
|
C_FIXDIV(tdc,2);
|
|
CHECK_OVERFLOW_OP(tdc.r ,+, tdc.i);
|
|
CHECK_OVERFLOW_OP(tdc.r ,-, tdc.i);
|
|
freqdata[0].r = tdc.r + tdc.i;
|
|
freqdata[ncfft].r = tdc.r - tdc.i;
|
|
#ifdef USE_SIMD
|
|
freqdata[ncfft].i = freqdata[0].i = _mm_set1_ps(0);
|
|
#else
|
|
freqdata[ncfft].i = freqdata[0].i = 0;
|
|
#endif
|
|
|
|
for ( k=1;k <= ncfft/2 ; ++k ) {
|
|
fpk = st->tmpbuf[k];
|
|
fpnk.r = st->tmpbuf[ncfft-k].r;
|
|
fpnk.i = - st->tmpbuf[ncfft-k].i;
|
|
C_FIXDIV(fpk,2);
|
|
C_FIXDIV(fpnk,2);
|
|
|
|
C_ADD( f1k, fpk , fpnk );
|
|
C_SUB( f2k, fpk , fpnk );
|
|
C_MUL( tw , f2k , st->super_twiddles[k-1]);
|
|
|
|
freqdata[k].r = HALF_OF(f1k.r + tw.r);
|
|
freqdata[k].i = HALF_OF(f1k.i + tw.i);
|
|
freqdata[ncfft-k].r = HALF_OF(f1k.r - tw.r);
|
|
freqdata[ncfft-k].i = HALF_OF(tw.i - f1k.i);
|
|
}
|
|
}
|
|
|
|
void kiss_fftri(kiss_fftr_cfg st,const kiss_fft_cpx *freqdata,kiss_fft_scalar *timedata)
|
|
{
|
|
/* input buffer timedata is stored row-wise */
|
|
int k, ncfft;
|
|
|
|
if (st->substate->inverse == 0) {
|
|
fprintf (stderr, "kiss fft usage error: improper alloc\n");
|
|
exit (1);
|
|
}
|
|
|
|
ncfft = st->substate->nfft;
|
|
|
|
st->tmpbuf[0].r = freqdata[0].r + freqdata[ncfft].r;
|
|
st->tmpbuf[0].i = freqdata[0].r - freqdata[ncfft].r;
|
|
C_FIXDIV(st->tmpbuf[0],2);
|
|
|
|
for (k = 1; k <= ncfft / 2; ++k) {
|
|
kiss_fft_cpx fk, fnkc, fek, fok, tmp;
|
|
fk = freqdata[k];
|
|
fnkc.r = freqdata[ncfft - k].r;
|
|
fnkc.i = -freqdata[ncfft - k].i;
|
|
C_FIXDIV( fk , 2 );
|
|
C_FIXDIV( fnkc , 2 );
|
|
|
|
C_ADD (fek, fk, fnkc);
|
|
C_SUB (tmp, fk, fnkc);
|
|
C_MUL (fok, tmp, st->super_twiddles[k-1]);
|
|
C_ADD (st->tmpbuf[k], fek, fok);
|
|
C_SUB (st->tmpbuf[ncfft - k], fek, fok);
|
|
#ifdef USE_SIMD
|
|
st->tmpbuf[ncfft - k].i *= _mm_set1_ps(-1.0);
|
|
#else
|
|
st->tmpbuf[ncfft - k].i *= -1;
|
|
#endif
|
|
}
|
|
kiss_fft (st->substate, st->tmpbuf, (kiss_fft_cpx *) timedata);
|
|
}
|