mirror of
https://github.com/mborgerding/kissfft.git
synced 2025-05-27 21:20:27 -04:00
197 lines
4.7 KiB
Python
Executable File
197 lines
4.7 KiB
Python
Executable File
#!/usr/bin/env python2.3
|
|
|
|
import math
|
|
import sys
|
|
import random
|
|
|
|
pi=math.pi
|
|
e=math.e
|
|
j=complex(0,1)
|
|
|
|
def fft(f,inv):
|
|
n=len(f)
|
|
if n==1:
|
|
return f
|
|
|
|
for p in 2,3,5:
|
|
if n%p==0:
|
|
break
|
|
else:
|
|
raise Exception('%s not factorable ' % n)
|
|
|
|
m = n/p
|
|
Fout=[]
|
|
for q in range(p): # 0,1
|
|
fp = f[q::p] # every p'th time sample
|
|
Fp = fft( fp ,inv)
|
|
Fout.extend( Fp )
|
|
|
|
for u in range(m):
|
|
scratch = Fout[u::m] # u to end in strides of m
|
|
for q1 in range(p):
|
|
k = q1*m + u # indices to Fout above that became scratch
|
|
Fout[ k ] = scratch[0] # cuz e**0==1 in loop below
|
|
for q in range(1,p):
|
|
if inv:
|
|
t = e ** ( j*2*pi*k*q/n )
|
|
else:
|
|
t = e ** ( -j*2*pi*k*q/n )
|
|
Fout[ k ] += scratch[q] * t
|
|
|
|
return Fout
|
|
|
|
def rifft(F):
|
|
N = len(F) - 1
|
|
Z = [0] * (N)
|
|
for k in range(N):
|
|
Fek = ( F[k] + F[-k-1].conjugate() )
|
|
Fok = ( F[k] - F[-k-1].conjugate() ) * e ** (j*pi*k/N)
|
|
Z[k] = Fek + j*Fok
|
|
|
|
fp = fft(Z , 1)
|
|
|
|
f = []
|
|
for c in fp:
|
|
f.append(c.real)
|
|
f.append(c.imag)
|
|
return f
|
|
|
|
def real_fft( f,inv ):
|
|
if inv:
|
|
return rifft(f)
|
|
|
|
N = len(f) / 2
|
|
|
|
res = f[::2]
|
|
ims = f[1::2]
|
|
|
|
fp = [ complex(r,i) for r,i in zip(res,ims) ]
|
|
print 'fft input ', fp
|
|
Fp = fft( fp ,0 )
|
|
print 'fft output ', Fp
|
|
|
|
F = [ complex(0,0) ] * ( N+1 )
|
|
|
|
F[0] = complex( Fp[0].real + Fp[0].imag , 0 )
|
|
|
|
for k in range(1,N/2+1):
|
|
tw = e ** ( -j*pi*(.5+float(k)/N ) )
|
|
|
|
F1k = Fp[k] + Fp[N-k].conjugate()
|
|
F2k = Fp[k] - Fp[N-k].conjugate()
|
|
F2k *= tw
|
|
F[k] = ( F1k + F2k ) * .5
|
|
F[N-k] = ( F1k - F2k ).conjugate() * .5
|
|
#F[N-k] = ( F1kp + e ** ( -j*pi*(.5+float(N-k)/N ) ) * F2kp ) * .5
|
|
#F[N-k] = ( F1k.conjugate() - tw.conjugate() * F2k.conjugate() ) * .5
|
|
|
|
F[N] = complex( Fp[0].real - Fp[0].imag , 0 )
|
|
return F
|
|
|
|
def main():
|
|
#fft_func = fft
|
|
fft_func = real_fft
|
|
|
|
tvec = [0.309655,0.815653,0.768570,0.591841,0.404767,0.637617,0.007803,0.012665]
|
|
Ftvec = [ complex(r,i) for r,i in zip(
|
|
[3.548571,-0.378761,-0.061950,0.188537,-0.566981,0.188537,-0.061950,-0.378761],
|
|
[0.000000,-1.296198,-0.848764,0.225337,0.000000,-0.225337,0.848764,1.296198] ) ]
|
|
|
|
F = fft_func( tvec,0 )
|
|
|
|
nerrs= 0
|
|
for i in range(len(Ftvec)/2 + 1):
|
|
if abs( F[i] - Ftvec[i] )> 1e-5:
|
|
print 'F[%d]: %s != %s' % (i,F[i],Ftvec[i])
|
|
nerrs += 1
|
|
|
|
print '%d errors in forward fft' % nerrs
|
|
if nerrs:
|
|
return
|
|
|
|
trec = fft_func( F , 1 )
|
|
|
|
for i in range(len(trec) ):
|
|
trec[i] /= len(trec)
|
|
|
|
for i in range(len(tvec) ):
|
|
if abs( trec[i] - tvec[i] )> 1e-5:
|
|
print 't[%d]: %s != %s' % (i,tvec[i],trec[i])
|
|
nerrs += 1
|
|
|
|
print '%d errors in reverse fft' % nerrs
|
|
|
|
|
|
def make_random(dims=[1]):
|
|
import Numeric
|
|
res = []
|
|
for i in range(dims[0]):
|
|
if len(dims)==1:
|
|
r=random.uniform(-1,1)
|
|
i=random.uniform(-1,1)
|
|
res.append( complex(r,i) )
|
|
else:
|
|
res.append( make_random( dims[1:] ) )
|
|
return Numeric.array(res)
|
|
|
|
def flatten(x):
|
|
import Numeric
|
|
ntotal = Numeric.product(Numeric.shape(x))
|
|
return Numeric.reshape(x,(ntotal,))
|
|
|
|
def randmat( ndims ):
|
|
dims=[]
|
|
for i in range( ndims ):
|
|
curdim = int( random.uniform(2,4) )
|
|
dims.append( curdim )
|
|
return make_random(dims )
|
|
|
|
def test_fftnd(ndims=3):
|
|
import FFT
|
|
import Numeric
|
|
|
|
x=randmat( ndims )
|
|
print 'dimensions=%s' % str( Numeric.shape(x) )
|
|
#print 'x=%s' %str(x)
|
|
xver = FFT.fftnd(x)
|
|
x2=myfftnd(x)
|
|
err = xver - x2
|
|
errf = flatten(err)
|
|
xverf = flatten(xver)
|
|
errpow = Numeric.vdot(errf,errf)+1e-10
|
|
sigpow = Numeric.vdot(xverf,xverf)+1e-10
|
|
snr = 10*math.log10(abs(sigpow/errpow) )
|
|
if snr<80:
|
|
print xver
|
|
print x2
|
|
print 'SNR=%sdB' % str( snr )
|
|
|
|
def myfftnd(x):
|
|
import Numeric
|
|
xf = flatten(x)
|
|
Xf = fftndwork( xf , Numeric.shape(x) )
|
|
return Numeric.reshape(Xf,Numeric.shape(x) )
|
|
|
|
def fftndwork(x,dims):
|
|
import Numeric
|
|
dimprod=Numeric.product( dims )
|
|
|
|
for k in range( len(dims) ):
|
|
cur_dim=dims[ k ]
|
|
stride=dimprod/cur_dim
|
|
next_x = [complex(0,0)]*len(x)
|
|
for i in range(stride):
|
|
next_x[i*cur_dim:(i+1)*cur_dim] = fft(x[i:(i+cur_dim)*stride:stride],0)
|
|
x = next_x
|
|
return x
|
|
|
|
if __name__ == "__main__":
|
|
try:
|
|
nd = int(sys.argv[1])
|
|
except:
|
|
nd=None
|
|
if nd:
|
|
test_fftnd( nd )
|
|
else:
|
|
sys.exit(0)
|