mirror of
https://github.com/mborgerding/kissfft.git
synced 2025-05-25 12:10:27 -04:00
Fixes test run with -DKISSFFT_TOOLS=OFF Signed-off-by: Vasyl Gello <vasek.gello@gmail.com>
144 lines
3.4 KiB
Python
Executable File
144 lines
3.4 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# Copyright (c) 2003-2019, Mark Borgerding. All rights reserved.
|
|
# This file is part of KISS FFT - https://github.com/mborgerding/kissfft
|
|
#
|
|
# SPDX-License-Identifier: BSD-3-Clause
|
|
# See COPYING file for more information.
|
|
from __future__ import absolute_import, division, print_function
|
|
import math
|
|
import sys
|
|
import os
|
|
import random
|
|
import struct
|
|
import getopt
|
|
import numpy as np
|
|
|
|
po = math.pi
|
|
e = math.e
|
|
do_real = False
|
|
datatype = os.environ.get('KISSFFT_DATATYPE', 'float')
|
|
openmp = os.environ.get('KISSFFT_OPENMP', 'float')
|
|
|
|
util = './fastfilt-' + datatype
|
|
|
|
if openmp == '1' or openmp == 'ON':
|
|
util = util + '-openmp'
|
|
|
|
minsnr = 90
|
|
if datatype == 'double':
|
|
dtype = np.float64
|
|
elif datatype == 'float':
|
|
dtype = np.float32
|
|
elif datatype == 'int16_t':
|
|
dtype = np.int16
|
|
minsnr = 10
|
|
elif datatype == 'int32_t':
|
|
dtype = np.int32
|
|
elif datatype == 'simd':
|
|
sys.stderr.write('testkiss.py does not yet test simd')
|
|
sys.exit(0)
|
|
else:
|
|
sys.stderr.write('unrecognized datatype {0}\n'.format(datatype))
|
|
sys.exit(1)
|
|
|
|
def dopack(x):
|
|
if np.iscomplexobj(x):
|
|
x = x.astype(np.complex128).view(np.float64)
|
|
else:
|
|
x = x.astype(np.float64)
|
|
return x.astype(dtype).tobytes()
|
|
|
|
def dounpack(x, cpx):
|
|
x = np.frombuffer(x, dtype).astype(np.float64)
|
|
if cpx:
|
|
x = x[::2] + 1j * x[1::2]
|
|
return x
|
|
|
|
def make_random(shape):
|
|
'create random uniform (-1,1) data of the given shape'
|
|
if do_real:
|
|
return np.random.uniform(-1, 1, shape)
|
|
else:
|
|
return (np.random.uniform(-1, 1, shape) + 1j * np.random.uniform(-1, 1, shape))
|
|
|
|
def randmat(ndim):
|
|
'create a random multidimensional array in range (-1,1)'
|
|
dims = np.random.randint(2, 5, ndim)
|
|
if do_real:
|
|
dims[-1] = (dims[-1] // 2) * 2 # force even last dimension if real
|
|
return make_random(dims)
|
|
|
|
def test_fft(ndim):
|
|
x = randmat(ndim)
|
|
|
|
if do_real:
|
|
xver = np.fft.rfftn(x)
|
|
else:
|
|
xver = np.fft.fftn(x)
|
|
|
|
x2 = dofft(x, do_real)
|
|
err = xver - x2
|
|
errf = err.ravel()
|
|
xverf = xver.ravel()
|
|
errpow = np.vdot(errf, errf) + 1e-10
|
|
sigpow = np.vdot(xverf, xverf) + 1e-10
|
|
snr = 10 * math.log10(abs(sigpow / errpow))
|
|
print('SNR (compared to NumPy) : {0:.1f}dB'.format(float(snr)))
|
|
|
|
if snr < minsnr:
|
|
print('xver=', xver)
|
|
print('x2=', x2)
|
|
print('err', err)
|
|
sys.exit(1)
|
|
|
|
def dofft(x, isreal):
|
|
dims = list(np.shape(x))
|
|
x = x.ravel()
|
|
|
|
scale = 1
|
|
if datatype == 'int16_t':
|
|
x = 32767 * x
|
|
scale = len(x) / 32767.0
|
|
elif datatype == 'int32_t':
|
|
x = 2147483647.0 * x
|
|
scale = len(x) / 2147483647.0
|
|
|
|
cmd = util + ' -n '
|
|
cmd += ','.join([str(d) for d in dims])
|
|
if do_real:
|
|
cmd += ' -R '
|
|
|
|
print(cmd)
|
|
|
|
from subprocess import Popen, PIPE
|
|
p = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE)
|
|
|
|
p.stdin.write(dopack(x))
|
|
p.stdin.close()
|
|
|
|
res = dounpack(p.stdout.read(), 1)
|
|
if do_real:
|
|
dims[-1] = (dims[-1] // 2) + 1
|
|
|
|
res = scale * res
|
|
|
|
p.wait()
|
|
return np.reshape(res, dims)
|
|
|
|
def main():
|
|
opts, args = getopt.getopt(sys.argv[1:], 'r')
|
|
opts = dict(opts)
|
|
global do_real
|
|
do_real = '-r' in opts
|
|
if do_real:
|
|
print('Testing multi-dimensional real FFTs')
|
|
else:
|
|
print('Testing multi-dimensional FFTs')
|
|
|
|
for dim in range(1, 4):
|
|
test_fft(dim)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|