kissfft/test/testkiss.py
Vasyl Gello 7c9a5586a9
testkiss.py: Do not depend on tools/fft_*
Fixes test run with -DKISSFFT_TOOLS=OFF

Signed-off-by: Vasyl Gello <vasek.gello@gmail.com>
2021-02-05 13:34:16 +02:00

144 lines
3.4 KiB
Python
Executable File

#!/usr/bin/env python
# Copyright (c) 2003-2019, Mark Borgerding. All rights reserved.
# This file is part of KISS FFT - https://github.com/mborgerding/kissfft
#
# SPDX-License-Identifier: BSD-3-Clause
# See COPYING file for more information.
from __future__ import absolute_import, division, print_function
import math
import sys
import os
import random
import struct
import getopt
import numpy as np
po = math.pi
e = math.e
do_real = False
datatype = os.environ.get('KISSFFT_DATATYPE', 'float')
openmp = os.environ.get('KISSFFT_OPENMP', 'float')
util = './fastfilt-' + datatype
if openmp == '1' or openmp == 'ON':
util = util + '-openmp'
minsnr = 90
if datatype == 'double':
dtype = np.float64
elif datatype == 'float':
dtype = np.float32
elif datatype == 'int16_t':
dtype = np.int16
minsnr = 10
elif datatype == 'int32_t':
dtype = np.int32
elif datatype == 'simd':
sys.stderr.write('testkiss.py does not yet test simd')
sys.exit(0)
else:
sys.stderr.write('unrecognized datatype {0}\n'.format(datatype))
sys.exit(1)
def dopack(x):
if np.iscomplexobj(x):
x = x.astype(np.complex128).view(np.float64)
else:
x = x.astype(np.float64)
return x.astype(dtype).tobytes()
def dounpack(x, cpx):
x = np.frombuffer(x, dtype).astype(np.float64)
if cpx:
x = x[::2] + 1j * x[1::2]
return x
def make_random(shape):
'create random uniform (-1,1) data of the given shape'
if do_real:
return np.random.uniform(-1, 1, shape)
else:
return (np.random.uniform(-1, 1, shape) + 1j * np.random.uniform(-1, 1, shape))
def randmat(ndim):
'create a random multidimensional array in range (-1,1)'
dims = np.random.randint(2, 5, ndim)
if do_real:
dims[-1] = (dims[-1] // 2) * 2 # force even last dimension if real
return make_random(dims)
def test_fft(ndim):
x = randmat(ndim)
if do_real:
xver = np.fft.rfftn(x)
else:
xver = np.fft.fftn(x)
x2 = dofft(x, do_real)
err = xver - x2
errf = err.ravel()
xverf = xver.ravel()
errpow = np.vdot(errf, errf) + 1e-10
sigpow = np.vdot(xverf, xverf) + 1e-10
snr = 10 * math.log10(abs(sigpow / errpow))
print('SNR (compared to NumPy) : {0:.1f}dB'.format(float(snr)))
if snr < minsnr:
print('xver=', xver)
print('x2=', x2)
print('err', err)
sys.exit(1)
def dofft(x, isreal):
dims = list(np.shape(x))
x = x.ravel()
scale = 1
if datatype == 'int16_t':
x = 32767 * x
scale = len(x) / 32767.0
elif datatype == 'int32_t':
x = 2147483647.0 * x
scale = len(x) / 2147483647.0
cmd = util + ' -n '
cmd += ','.join([str(d) for d in dims])
if do_real:
cmd += ' -R '
print(cmd)
from subprocess import Popen, PIPE
p = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE)
p.stdin.write(dopack(x))
p.stdin.close()
res = dounpack(p.stdout.read(), 1)
if do_real:
dims[-1] = (dims[-1] // 2) + 1
res = scale * res
p.wait()
return np.reshape(res, dims)
def main():
opts, args = getopt.getopt(sys.argv[1:], 'r')
opts = dict(opts)
global do_real
do_real = '-r' in opts
if do_real:
print('Testing multi-dimensional real FFTs')
else:
print('Testing multi-dimensional FFTs')
for dim in range(1, 4):
test_fft(dim)
if __name__ == "__main__":
main()