#ifndef KISSFFT_CLASS_HH #define KISSFFT_CLASS_HH #include #include namespace kissfft_utils { template struct traits { typedef T_scalar scalar_type; typedef std::complex cpx_type; static void fill_twiddles( cpx_type * dst, std::size_t nfft, bool inverse ) { T_scalar phinc = (inverse?2:-2)* acos( (T_scalar) -1) / nfft; for (std::size_t i=0;i & _twiddles, std::size_t nfft, bool inverse, std::vector & stageRadix, std::vector & stageRemainder ) { _twiddles.resize(nfft); fill_twiddles( &_twiddles[0],nfft,inverse); //factorize //start factoring out 4's, then 2's, then 3,5,7,9,... std::size_t n= nfft; std::size_t p=4; do { while (n % p) { switch (p) { case 4: p = 2; break; case 2: p = 3; break; default: p += 2; break; } if (p*p>n) p = n;// no more factors } n /= p; stageRadix.push_back(p); stageRemainder.push_back(n); }while(n>1); } }; } template > class kissfft { public: typedef T_traits traits_type; typedef typename traits_type::scalar_type scalar_type; typedef typename traits_type::cpx_type cpx_type; kissfft( std::size_t nfft, bool inverse ) :_nfft(nfft) ,_inverse(inverse) { T_traits::prepare(_twiddles, _nfft,_inverse ,_stageRadix, _stageRemainder); } void transform( const cpx_type * src, cpx_type * dst ) const { kf_work(0, dst, src, 1,1); } private: void kf_work( std::size_t stage, cpx_type * Fout, const cpx_type * f, std::size_t fstride, std::size_t in_stride) const { const std::size_t p = _stageRadix[stage]; const std::size_t m = _stageRemainder[stage]; cpx_type * const Fout_beg = Fout; cpx_type * const Fout_end = Fout + p*m; if (m==1) { do{ *Fout = *f; f += fstride*in_stride; }while(++Fout != Fout_end ); }else{ do{ // recursive call: // DFT of size m*p performed by doing // p instances of smaller DFTs of size m, // each one takes a decimated version of the input kf_work(stage+1, Fout , f, fstride*p,in_stride); f += fstride*in_stride; }while( (Fout += m) != Fout_end ); } Fout=Fout_beg; // recombine the p smaller DFTs switch (p) { case 2: kf_bfly2(Fout,fstride,m); break; case 3: kf_bfly3(Fout,fstride,m); break; case 4: kf_bfly4(Fout,fstride,m); break; case 5: kf_bfly5(Fout,fstride,m); break; default: kf_bfly_generic(Fout,fstride,m,p); break; } } // these were #define macros in the original kiss_fft static void C_ADD( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a+b;} static void C_MUL( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a*b;} static void C_SUB( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a-b;} static void C_ADDTO( cpx_type & c,const cpx_type & a) { c+=a;} static void C_FIXDIV( cpx_type & ,int ) {} // NO-OP for float types static scalar_type S_MUL( const scalar_type & a,const scalar_type & b) { return a*b;} static scalar_type HALF_OF( const scalar_type & a) { return a*.5;} static void C_MULBYSCALAR(cpx_type & c,const scalar_type & a) {c*=a;} void kf_bfly2( cpx_type * Fout, const size_t fstride, std::size_t m) const { for (std::size_t k=0;kreal() - HALF_OF(scratch[3].real() ) , Fout->imag() - HALF_OF(scratch[3].imag() ) ); C_MULBYSCALAR( scratch[0] , epi3.imag() ); C_ADDTO(*Fout,scratch[3]); Fout[m2] = cpx_type( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() ); C_ADDTO( Fout[m] , cpx_type( -scratch[0].imag(),scratch[0].real() ) ); ++Fout; }while(--k); } void kf_bfly5( cpx_type * Fout, const std::size_t fstride, const std::size_t m) const { cpx_type *Fout0,*Fout1,*Fout2,*Fout3,*Fout4; cpx_type scratch[13]; const cpx_type ya = _twiddles[fstride*m]; const cpx_type yb = _twiddles[fstride*2*m]; Fout0=Fout; Fout1=Fout0+m; Fout2=Fout0+2*m; Fout3=Fout0+3*m; Fout4=Fout0+4*m; for ( std::size_t u=0; u=_nfft) twidx-=_nfft; cpx_type t; C_MUL(t,scratchbuf[q] , twiddles[twidx] ); C_ADDTO( Fout[ k ] ,t); } k += m; } } } std::size_t _nfft; bool _inverse; std::vector _twiddles; std::vector _stageRadix; std::vector _stageRemainder; }; #endif