#!/usr/local/bin/python2.3 import math pi=math.pi e=math.e j=complex(0,1) def fft(f): n=len(f) if n==1: return f for p in 2,3,5: if n%p==0: break else: raise Exception('%s not factorable ' % n) #print 'n=%d,p=%d' % (n,p) #print f,' << fin' m = n/p Fout=[] for q in range(p): # 0,1 fp = f[q::p] #print fp,'<< fp' Fp = fft( fp ) Fout.extend( Fp ) for u in range(m): scratch = Fout[u::m] # u to end in strides of m #print scratch for q1 in range(p): k = q1*m + u # indices to Fout above that became scratch Fout[ k ] = scratch[0] # cuz e**0==1 in loop below for q in range(1,p): t = e ** ( j*2*pi*k*q/n ) Fout[ k ] += scratch[q] * t return Fout def real_fft( f ): N = len(f) / 2 res = f[::2] ims = f[1::2] fp = [ complex(r,i) for r,i in zip(res,ims) ] Fp = fft( fp ) F = [] for k in range(N): s2 = ( Fp[k] + Fp[-k] ) * .5 d2 = ( Fp[k] - Fp[-k] ).conjugate() * .5 F1k = complex( s2.real , d2.imag ) F2k = complex( s2.imag , d2.real ) F.append( F1k + e ** ( -j*pi*k/N ) * F2k ) F.append( complex( Fp[0].real - Fp[0].imag , 0 ) ) return F def test(f=range(1024),ntimes=10): import time t0 = time.time() for i in range(ntimes): fft(f) t1 = time.time() print '%ss'% (t1-t0)