#!/usr/local/bin/python2.3 import math import sys import random import Numeric import struct pi=math.pi e=math.e j=complex(0,1) def dopack(x,fmt='f',cpx=1): x = Numeric.reshape( x, ( Numeric.size(x),) ) if cpx: s = ''.join( [ struct.pack(fmt*2,c.real,c.imag) for c in x ] ) else: s = ''.join( [ struct.pack(fmt,c) for c in x ] ) return s def dounpack(x,fmt,cpx): uf = fmt * ( len(x) / 4 ) s = struct.unpack(uf,x) if cpx: return Numeric.array(s[::2]) + Numeric.array( s[1::2] )*j else: return Numeric.array(s ) def main(): #fft_func = fft fft_func = real_fft tvec = [0.309655,0.815653,0.768570,0.591841,0.404767,0.637617,0.007803,0.012665] Ftvec = [ complex(r,i) for r,i in zip( [3.548571,-0.378761,-0.061950,0.188537,-0.566981,0.188537,-0.061950,-0.378761], [0.000000,-1.296198,-0.848764,0.225337,0.000000,-0.225337,0.848764,1.296198] ) ] F = fft_func( tvec,0 ) nerrs= 0 for i in range(len(Ftvec)/2 + 1): if abs( F[i] - Ftvec[i] )> 1e-5: print 'F[%d]: %s != %s' % (i,F[i],Ftvec[i]) nerrs += 1 print '%d errors in forward fft' % nerrs if nerrs: return trec = fft_func( F , 1 ) for i in range(len(trec) ): trec[i] /= len(trec) for i in range(len(tvec) ): if abs( trec[i] - tvec[i] )> 1e-5: print 't[%d]: %s != %s' % (i,tvec[i],trec[i]) nerrs += 1 print '%d errors in reverse fft' % nerrs def make_random(dims=[1]): import Numeric res = [] for i in range(dims[0]): if len(dims)==1: r=random.uniform(-1,1) i=random.uniform(-1,1) res.append( complex(r,i) ) else: res.append( make_random( dims[1:] ) ) return Numeric.array(res) def flatten(x): import Numeric ntotal = Numeric.product(Numeric.shape(x)) return Numeric.reshape(x,(ntotal,)) def randmat( ndims ): dims=[] for i in range( ndims ): curdim = int( random.uniform(2,4) ) dims.append( curdim ) return make_random(dims ) def test_fftnd(ndims=3): import FFT import Numeric x=randmat( ndims ) print 'dimensions=%s' % str( Numeric.shape(x) ) #print 'x=%s' %str(x) xver = FFT.fftnd(x) x2=myfftnd(x) err = xver - x2 errf = flatten(err) xverf = flatten(xver) errpow = Numeric.vdot(errf,errf)+1e-10 sigpow = Numeric.vdot(xverf,xverf)+1e-10 snr = 10*math.log10(abs(sigpow/errpow) ) print 'SNR(compared to Python FFT module) =%sdB' % str( snr ) if snr<80: print xver print x2 sys.exit(1) def myfftnd(x): import Numeric xf = flatten(x) Xf = fftndwork( xf , Numeric.shape(x) ) return Numeric.reshape(Xf,Numeric.shape(x) ) def fftndwork(x,dims): import popen2 cmd = '../tools/fft -n ' cmd += ','.join([str(d) for d in dims]) p = popen2.Popen3(cmd ) p.tochild.write( dopack( x , 'f' ,1 ) ) p.tochild.close() res = dounpack( p.fromchild.read() , 'f' ,1 ) p.wait() return res #import Numeric #dimprod=Numeric.product( dims ) # #for k in range( len(dims) ): #cur_dim=dims[ k ] #stride=dimprod/cur_dim #next_x = [complex(0,0)]*len(x) #for i in range(stride): #next_x[i*cur_dim:(i+1)*cur_dim] = fft(x[i:(i+cur_dim)*stride:stride],0) #x = next_x #return x if __name__ == "__main__": try: nd = int(sys.argv[1]) except: nd=None if nd: test_fftnd( nd ) else: sys.exit(0)