#ifndef KISSFFT_CLASS_HH #include #include namespace kissfft_utils { template struct traits { void fill_twiddles( std::complex * dst ,int nfft,bool inverse); void prepare( std::vector< std::complex > & dst, int nfft,bool inverse, std::vector & stageRadix, std::vector & stageRemainder ) { dst.resize(nfft); fill_twiddles( &dst[0],nfft,inverse); //factorize //start factoring out 4's, then 2's, then 3,5,7,9,... int n= nfft; int p=4; do { while (n % p) { switch (p) { case 4: p = 2; break; case 2: p = 3; break; default: p += 2; break; } if (p*p>n) p=n;// no more factors } n /= p; stageRadix.push_back(p); stageRemainder.push_back(n); }while(n>1); } }; template void traits::fill_twiddles( std::complex * dst ,int nfft,bool inverse) { T_twid phinc = (inverse?2:-2)* acos( (T_twid) -1) / nfft; for (int i=0;i(0,i*phinc) ); } /* template <> void traits::fill_twiddles(std::complex * dst ,int nfft,bool inverse) { long double phinc = (inverse?2:-2)*3.14159265358979323846264338327950288419716939937510L / nfft; for (int i=0;i(cosl(i*phinc),sinl(i*phinc)); } */ } template > class kissfft { public: typedef T_traits traits_type; typedef T_Data scalar_type; typedef std::complex cpx_type; kissfft(int nfft,bool inverse,const traits_type & traits=traits_type() ) :_nfft(nfft),_inverse(inverse),_traits(traits) { _traits.prepare(_twiddles, _nfft,_inverse ,_stageRadix, _stageRemainder); } void transform(const cpx_type * src , cpx_type * dst) { kf_work(0, dst, src, 1); } private: void kf_work( int stage,cpx_type * Fout, const cpx_type * f, const size_t fstride) { int p = _stageRadix[stage]; int m = _stageRemainder[stage]; cpx_type * Fout_beg = Fout; cpx_type * Fout_end = Fout + p*m; if (m==1) { do{ *Fout = *f; f += fstride; }while(++Fout != Fout_end ); }else{ do{ // recursive call: // DFT of size m*p performed by doing // p instances of smaller DFTs of size m, // each one takes a decimated version of the input kf_work(stage+1, Fout , f, fstride*p); f += fstride; }while( (Fout += m) != Fout_end ); } Fout=Fout_beg; // recombine the p smaller DFTs switch (p) { case 2: kf_bfly2(Fout,fstride,m); break; case 3: kf_bfly3(Fout,fstride,m); break; case 4: kf_bfly4(Fout,fstride,m); break; case 5: kf_bfly5(Fout,fstride,m); break; default: kf_bfly_generic(Fout,fstride,m,p); break; } } // these were #define macros in the original kiss_fft void C_ADD( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a+b;} void C_MUL( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a*b;} void C_SUB( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a-b;} void C_ADDTO( cpx_type & c,const cpx_type & a) { c+=a;} void C_FIXDIV( cpx_type & c,int n) {} // NO-OP for float types scalar_type S_MUL( const scalar_type & a,const scalar_type & b) { return a*b;} scalar_type HALF_OF( const scalar_type & a) { return a*.5;} void C_MULBYSCALAR(cpx_type & c,const scalar_type & a) {c*=a;} void kf_bfly2( cpx_type * Fout, const size_t fstride, int m) { cpx_type * Fout2; cpx_type * tw1 = &_twiddles[0]; cpx_type t; Fout2 = Fout + m; do{ C_FIXDIV(*Fout,2); C_FIXDIV(*Fout2,2); C_MUL (t, *Fout2 , *tw1); tw1 += fstride; C_SUB( *Fout2 , *Fout , t ); C_ADDTO( *Fout , t ); ++Fout2; ++Fout; }while (--m); } void kf_bfly4( cpx_type * Fout, const size_t fstride, const size_t m) { cpx_type *tw1,*tw2,*tw3; cpx_type scratch[6]; size_t k=m; const size_t m2=2*m; const size_t m3=3*m; tw3 = tw2 = tw1 = &_twiddles[0]; do { C_MUL(scratch[0],Fout[m] , *tw1 ); C_MUL(scratch[1],Fout[m2] , *tw2 ); C_MUL(scratch[2],Fout[m3] , *tw3 ); C_SUB( scratch[5] , *Fout, scratch[1] ); C_ADDTO(*Fout, scratch[1]); C_ADD( scratch[3] , scratch[0] , scratch[2] ); C_SUB( scratch[4] , scratch[0] , scratch[2] ); C_SUB( Fout[m2], *Fout, scratch[3] ); tw1 += fstride; tw2 += fstride*2; tw3 += fstride*3; C_ADDTO( *Fout , scratch[3] ); if(_inverse) { Fout[m] = cpx_type( scratch[5].real() - scratch[4].imag() , scratch[5].imag() + scratch[4].real() ); Fout[m3] = cpx_type( scratch[5].real() + scratch[4].imag() , scratch[5].imag() - scratch[4].real() ); }else{ Fout[m] = cpx_type( scratch[5].real() + scratch[4].imag() , scratch[5].imag() - scratch[4].real() ); Fout[m3] = cpx_type( scratch[5].real() - scratch[4].imag() , scratch[5].imag() + scratch[4].real() ); } ++Fout; }while(--k); } void kf_bfly3( cpx_type * Fout, const size_t fstride, const size_t m) { size_t k=m; const size_t m2 = 2*m; cpx_type *tw1,*tw2; cpx_type scratch[5]; cpx_type epi3; epi3 = _twiddles[fstride*m]; tw1=tw2=&_twiddles[0]; do{ C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3); C_MUL(scratch[1],Fout[m] , *tw1); C_MUL(scratch[2],Fout[m2] , *tw2); C_ADD(scratch[3],scratch[1],scratch[2]); C_SUB(scratch[0],scratch[1],scratch[2]); tw1 += fstride; tw2 += fstride*2; Fout[m] = cpx_type( Fout->real() - HALF_OF(scratch[3].real() ) , Fout->imag() - HALF_OF(scratch[3].imag() ) ); C_MULBYSCALAR( scratch[0] , epi3.imag() ); C_ADDTO(*Fout,scratch[3]); Fout[m2] = cpx_type( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() ); C_ADDTO( Fout[m] , cpx_type( -scratch[0].imag(),scratch[0].real() ) ); ++Fout; }while(--k); } void kf_bfly5( cpx_type * Fout, const size_t fstride, const size_t m) { cpx_type *Fout0,*Fout1,*Fout2,*Fout3,*Fout4; int u; cpx_type scratch[13]; cpx_type * twiddles = &_twiddles[0]; cpx_type *tw; cpx_type ya,yb; ya = twiddles[fstride*m]; yb = twiddles[fstride*2*m]; Fout0=Fout; Fout1=Fout0+m; Fout2=Fout0+2*m; Fout3=Fout0+3*m; Fout4=Fout0+4*m; tw=twiddles; for ( u=0; u=Norig) twidx-=Norig; C_MUL(t,scratchbuf[q] , twiddles[twidx] ); C_ADDTO( Fout[ k ] ,t); } k += m; } } } int _nfft; bool _inverse; std::vector _twiddles; std::vector _stageRadix; std::vector _stageRemainder; traits_type _traits; }; #endif