I had to fix some python3 incompatibilities and realized how embarrassing the code was. I refactored to make it look a little more like it was written by someone who knows Python.

This commit is contained in:
Mark Borgerding 2020-03-15 14:53:58 -04:00
parent 1efe72041e
commit b420613372

View File

@ -4,158 +4,135 @@
#
# SPDX-License-Identifier: BSD-3-Clause
# See COPYING file for more information.
from __future__ import division,print_function
from __future__ import absolute_import, division, print_function
import math
import sys
import os
import random
import struct
import getopt
import numpy
import numpy as np
pi=math.pi
e=math.e
doreal=0
datatype = os.environ.get('DATATYPE','float')
po = math.pi
e = math.e
do_real = False
datatype = os.environ.get('DATATYPE', 'float')
util = '../tools/fft_' + datatype
minsnr=90
minsnr = 90
if datatype == 'double':
fmt='d'
elif datatype=='int16_t':
fmt='h'
minsnr=10
elif datatype=='int32_t':
fmt='i'
elif datatype=='simd':
fmt='4f'
dtype = np.float64
elif datatype == 'float':
dtype = np.float32
elif datatype == 'int16_t':
dtype = np.int16
minsnr = 10
elif datatype == 'int32_t':
dtype = np.int32
elif datatype == 'simd':
sys.stderr.write('testkiss.py does not yet test simd')
sys.exit(0)
elif datatype=='float':
fmt='f'
else:
sys.stderr.write('unrecognized datatype %s\n' % datatype)
sys.stderr.write('unrecognized datatype {0}\n'.format(datatype))
sys.exit(1)
def dopack(x,cpx=1):
x = numpy.reshape( x, ( numpy.size(x),) )
def dopack(x):
if np.iscomplexobj(x):
x = x.astype(np.complex128).view(np.float64)
else:
x = x.astype(np.float64)
return x.astype(dtype).tobytes()
def dounpack(x, cpx):
x = np.frombuffer(x, dtype).astype(np.float64)
if cpx:
s = ''.join( [ struct.pack(fmt*2,c.real,c.imag) for c in x ] )
x = x[::2] + 1j * x[1::2]
return x
def make_random(shape):
'create random uniform (-1,1) data of the given shape'
if do_real:
return np.random.uniform(-1, 1, shape)
else:
s = ''.join( [ struct.pack(fmt,c.real) for c in x ] )
return s
return (np.random.uniform(-1, 1, shape) + 1j * np.random.uniform(-1, 1, shape))
def dounpack(x,cpx):
uf = fmt * ( len(x) // struct.calcsize(fmt) )
s = struct.unpack(uf,x)
if cpx:
return numpy.array(s[::2]) + numpy.array( s[1::2] )*1j
def randmat(ndim):
'create a random multidimensional array in range (-1,1)'
dims = np.random.randint(2, 5, ndim)
if do_real:
dims[-1] = (dims[-1] // 2) * 2 # force even last dimension if real
return make_random(dims)
def test_fft(ndim):
x = randmat(ndim)
if do_real:
xver = np.fft.rfftn(x)
else:
return numpy.array(s )
xver = np.fft.fftn(x)
def make_random(dims=[1]):
res = []
for i in range(dims[0]):
if len(dims)==1:
r=random.uniform(-1,1)
if doreal:
res.append( r )
else:
i=random.uniform(-1,1)
res.append( complex(r,i) )
else:
res.append( make_random( dims[1:] ) )
return numpy.array(res)
def flatten(x):
ntotal = numpy.size(x)
return numpy.reshape(x,(ntotal,))
def randmat( ndims ):
dims=[]
for i in range( ndims ):
curdim = int( random.uniform(2,5) )
if doreal and i==(ndims-1):
curdim = int(curdim/2)*2 # force even last dimension if real
dims.append( curdim )
return make_random(dims )
def test_fft(ndims):
x=randmat( ndims )
if doreal:
xver = numpy.fft.rfftn(x)
else:
xver = numpy.fft.fftn(x)
x2=dofft(x,doreal)
x2 = dofft(x, do_real)
err = xver - x2
errf = flatten(err)
xverf = flatten(xver)
errpow = numpy.vdot(errf,errf)+1e-10
sigpow = numpy.vdot(xverf,xverf)+1e-10
snr = 10*math.log10(abs(sigpow/errpow) )
print( 'SNR (compared to NumPy) : {0:.1f}dB'.format( float(snr) ) )
errf = err.ravel()
xverf = xver.ravel()
errpow = np.vdot(errf, errf) + 1e-10
sigpow = np.vdot(xverf, xverf) + 1e-10
snr = 10 * math.log10(abs(sigpow / errpow))
print('SNR (compared to NumPy) : {0:.1f}dB'.format(float(snr)))
if snr<minsnr:
print( 'xver=',xver )
print( 'x2=',x2)
print( 'err',err)
if snr < minsnr:
print('xver=', xver)
print('x2=', x2)
print('err', err)
sys.exit(1)
def dofft(x,isreal):
dims=list( numpy.shape(x) )
x = flatten(x)
scale=1
if datatype=='int16_t':
def dofft(x, isreal):
dims = list(np.shape(x))
x = x.ravel()
scale = 1
if datatype == 'int16_t':
x = 32767 * x
scale = len(x) / 32767.0
elif datatype=='int32_t':
elif datatype == 'int32_t':
x = 2147483647.0 * x
scale = len(x) / 2147483647.0
cmd='%s -n ' % util
cmd = util + ' -n '
cmd += ','.join([str(d) for d in dims])
if doreal:
if do_real:
cmd += ' -R '
print( cmd)
print(cmd)
from subprocess import Popen,PIPE
p = Popen(cmd,shell=True,stdin=PIPE,stdout=PIPE )
from subprocess import Popen, PIPE
p = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE)
p.stdin.write( dopack( x , isreal==False ) )
p.stdin.write(dopack(x))
p.stdin.close()
res = dounpack( p.stdout.read() , 1 )
if doreal:
dims[-1] = int( dims[-1]/2 ) + 1
res = dounpack(p.stdout.read(), 1)
if do_real:
dims[-1] = (dims[-1] // 2) + 1
res = scale * res
p.wait()
return numpy.reshape(res,dims)
return np.reshape(res, dims)
def main():
opts,args = getopt.getopt(sys.argv[1:],'r')
opts=dict(opts)
global doreal
doreal = opts.has_key('-r')
if doreal:
print( 'Testing multi-dimensional real FFTs')
opts, args = getopt.getopt(sys.argv[1:], 'r')
opts = dict(opts)
global do_real
do_real = '-r' in opts
if do_real:
print('Testing multi-dimensional real FFTs')
else:
print( 'Testing multi-dimensional FFTs')
print('Testing multi-dimensional FFTs')
for dim in range(1, 4):
test_fft(dim)
for dim in range(1,4):
test_fft( dim )
if __name__ == "__main__":
main()