mirror of
https://github.com/mborgerding/kissfft.git
synced 2025-05-27 21:20:27 -04:00
I had to fix some python3 incompatibilities and realized how embarrassing the code was. I refactored to make it look a little more like it was written by someone who knows Python.
This commit is contained in:
parent
1efe72041e
commit
b420613372
193
test/testkiss.py
193
test/testkiss.py
@ -4,158 +4,135 @@
|
||||
#
|
||||
# SPDX-License-Identifier: BSD-3-Clause
|
||||
# See COPYING file for more information.
|
||||
from __future__ import division,print_function
|
||||
from __future__ import absolute_import, division, print_function
|
||||
import math
|
||||
import sys
|
||||
import os
|
||||
import random
|
||||
import struct
|
||||
import getopt
|
||||
import numpy
|
||||
import numpy as np
|
||||
|
||||
pi=math.pi
|
||||
e=math.e
|
||||
|
||||
doreal=0
|
||||
|
||||
datatype = os.environ.get('DATATYPE','float')
|
||||
po = math.pi
|
||||
e = math.e
|
||||
do_real = False
|
||||
datatype = os.environ.get('DATATYPE', 'float')
|
||||
|
||||
util = '../tools/fft_' + datatype
|
||||
minsnr=90
|
||||
minsnr = 90
|
||||
if datatype == 'double':
|
||||
fmt='d'
|
||||
elif datatype=='int16_t':
|
||||
fmt='h'
|
||||
minsnr=10
|
||||
elif datatype=='int32_t':
|
||||
fmt='i'
|
||||
elif datatype=='simd':
|
||||
fmt='4f'
|
||||
dtype = np.float64
|
||||
elif datatype == 'float':
|
||||
dtype = np.float32
|
||||
elif datatype == 'int16_t':
|
||||
dtype = np.int16
|
||||
minsnr = 10
|
||||
elif datatype == 'int32_t':
|
||||
dtype = np.int32
|
||||
elif datatype == 'simd':
|
||||
sys.stderr.write('testkiss.py does not yet test simd')
|
||||
sys.exit(0)
|
||||
elif datatype=='float':
|
||||
fmt='f'
|
||||
else:
|
||||
sys.stderr.write('unrecognized datatype %s\n' % datatype)
|
||||
sys.stderr.write('unrecognized datatype {0}\n'.format(datatype))
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def dopack(x,cpx=1):
|
||||
x = numpy.reshape( x, ( numpy.size(x),) )
|
||||
|
||||
def dopack(x):
|
||||
if np.iscomplexobj(x):
|
||||
x = x.astype(np.complex128).view(np.float64)
|
||||
else:
|
||||
x = x.astype(np.float64)
|
||||
return x.astype(dtype).tobytes()
|
||||
|
||||
def dounpack(x, cpx):
|
||||
x = np.frombuffer(x, dtype).astype(np.float64)
|
||||
if cpx:
|
||||
s = ''.join( [ struct.pack(fmt*2,c.real,c.imag) for c in x ] )
|
||||
x = x[::2] + 1j * x[1::2]
|
||||
return x
|
||||
|
||||
def make_random(shape):
|
||||
'create random uniform (-1,1) data of the given shape'
|
||||
if do_real:
|
||||
return np.random.uniform(-1, 1, shape)
|
||||
else:
|
||||
s = ''.join( [ struct.pack(fmt,c.real) for c in x ] )
|
||||
return s
|
||||
return (np.random.uniform(-1, 1, shape) + 1j * np.random.uniform(-1, 1, shape))
|
||||
|
||||
def dounpack(x,cpx):
|
||||
uf = fmt * ( len(x) // struct.calcsize(fmt) )
|
||||
s = struct.unpack(uf,x)
|
||||
if cpx:
|
||||
return numpy.array(s[::2]) + numpy.array( s[1::2] )*1j
|
||||
def randmat(ndim):
|
||||
'create a random multidimensional array in range (-1,1)'
|
||||
dims = np.random.randint(2, 5, ndim)
|
||||
if do_real:
|
||||
dims[-1] = (dims[-1] // 2) * 2 # force even last dimension if real
|
||||
return make_random(dims)
|
||||
|
||||
def test_fft(ndim):
|
||||
x = randmat(ndim)
|
||||
|
||||
if do_real:
|
||||
xver = np.fft.rfftn(x)
|
||||
else:
|
||||
return numpy.array(s )
|
||||
xver = np.fft.fftn(x)
|
||||
|
||||
def make_random(dims=[1]):
|
||||
res = []
|
||||
for i in range(dims[0]):
|
||||
if len(dims)==1:
|
||||
r=random.uniform(-1,1)
|
||||
if doreal:
|
||||
res.append( r )
|
||||
else:
|
||||
i=random.uniform(-1,1)
|
||||
res.append( complex(r,i) )
|
||||
else:
|
||||
res.append( make_random( dims[1:] ) )
|
||||
return numpy.array(res)
|
||||
|
||||
def flatten(x):
|
||||
ntotal = numpy.size(x)
|
||||
return numpy.reshape(x,(ntotal,))
|
||||
|
||||
def randmat( ndims ):
|
||||
dims=[]
|
||||
for i in range( ndims ):
|
||||
curdim = int( random.uniform(2,5) )
|
||||
if doreal and i==(ndims-1):
|
||||
curdim = int(curdim/2)*2 # force even last dimension if real
|
||||
dims.append( curdim )
|
||||
return make_random(dims )
|
||||
|
||||
def test_fft(ndims):
|
||||
x=randmat( ndims )
|
||||
|
||||
if doreal:
|
||||
xver = numpy.fft.rfftn(x)
|
||||
else:
|
||||
xver = numpy.fft.fftn(x)
|
||||
|
||||
x2=dofft(x,doreal)
|
||||
x2 = dofft(x, do_real)
|
||||
err = xver - x2
|
||||
errf = flatten(err)
|
||||
xverf = flatten(xver)
|
||||
errpow = numpy.vdot(errf,errf)+1e-10
|
||||
sigpow = numpy.vdot(xverf,xverf)+1e-10
|
||||
snr = 10*math.log10(abs(sigpow/errpow) )
|
||||
print( 'SNR (compared to NumPy) : {0:.1f}dB'.format( float(snr) ) )
|
||||
errf = err.ravel()
|
||||
xverf = xver.ravel()
|
||||
errpow = np.vdot(errf, errf) + 1e-10
|
||||
sigpow = np.vdot(xverf, xverf) + 1e-10
|
||||
snr = 10 * math.log10(abs(sigpow / errpow))
|
||||
print('SNR (compared to NumPy) : {0:.1f}dB'.format(float(snr)))
|
||||
|
||||
if snr<minsnr:
|
||||
print( 'xver=',xver )
|
||||
print( 'x2=',x2)
|
||||
print( 'err',err)
|
||||
if snr < minsnr:
|
||||
print('xver=', xver)
|
||||
print('x2=', x2)
|
||||
print('err', err)
|
||||
sys.exit(1)
|
||||
|
||||
def dofft(x,isreal):
|
||||
dims=list( numpy.shape(x) )
|
||||
x = flatten(x)
|
||||
|
||||
scale=1
|
||||
if datatype=='int16_t':
|
||||
def dofft(x, isreal):
|
||||
dims = list(np.shape(x))
|
||||
x = x.ravel()
|
||||
|
||||
scale = 1
|
||||
if datatype == 'int16_t':
|
||||
x = 32767 * x
|
||||
scale = len(x) / 32767.0
|
||||
elif datatype=='int32_t':
|
||||
elif datatype == 'int32_t':
|
||||
x = 2147483647.0 * x
|
||||
scale = len(x) / 2147483647.0
|
||||
|
||||
cmd='%s -n ' % util
|
||||
cmd = util + ' -n '
|
||||
cmd += ','.join([str(d) for d in dims])
|
||||
if doreal:
|
||||
if do_real:
|
||||
cmd += ' -R '
|
||||
|
||||
print( cmd)
|
||||
print(cmd)
|
||||
|
||||
from subprocess import Popen,PIPE
|
||||
p = Popen(cmd,shell=True,stdin=PIPE,stdout=PIPE )
|
||||
from subprocess import Popen, PIPE
|
||||
p = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE)
|
||||
|
||||
p.stdin.write( dopack( x , isreal==False ) )
|
||||
p.stdin.write(dopack(x))
|
||||
p.stdin.close()
|
||||
|
||||
res = dounpack( p.stdout.read() , 1 )
|
||||
if doreal:
|
||||
dims[-1] = int( dims[-1]/2 ) + 1
|
||||
res = dounpack(p.stdout.read(), 1)
|
||||
if do_real:
|
||||
dims[-1] = (dims[-1] // 2) + 1
|
||||
|
||||
res = scale * res
|
||||
|
||||
p.wait()
|
||||
return numpy.reshape(res,dims)
|
||||
return np.reshape(res, dims)
|
||||
|
||||
def main():
|
||||
opts,args = getopt.getopt(sys.argv[1:],'r')
|
||||
opts=dict(opts)
|
||||
|
||||
global doreal
|
||||
doreal = opts.has_key('-r')
|
||||
|
||||
if doreal:
|
||||
print( 'Testing multi-dimensional real FFTs')
|
||||
opts, args = getopt.getopt(sys.argv[1:], 'r')
|
||||
opts = dict(opts)
|
||||
global do_real
|
||||
do_real = '-r' in opts
|
||||
if do_real:
|
||||
print('Testing multi-dimensional real FFTs')
|
||||
else:
|
||||
print( 'Testing multi-dimensional FFTs')
|
||||
print('Testing multi-dimensional FFTs')
|
||||
|
||||
for dim in range(1, 4):
|
||||
test_fft(dim)
|
||||
|
||||
for dim in range(1,4):
|
||||
test_fft( dim )
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user