removed unused and rotted code (closes #25)

This commit is contained in:
Mark Borgerding 2019-07-19 10:43:49 -04:00
parent 36dbc05760
commit b24d80769b
6 changed files with 0 additions and 522 deletions

View File

@ -1,10 +0,0 @@
syntax:glob
test/bm_*
test/st_*
test/tkfc_*
test/tr_*
tools/fastconv_*
tools/fastconvr_*
tools/fft_*
*.swp
*~

View File

@ -1,97 +0,0 @@
#!/usr/bin/env python
# Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
# This file is part of KISS FFT - https://github.com/mborgerding/kissfft
#
# SPDX-License-Identifier: BSD-3-Clause
# See COPYING file for more information.
# use FFTPACK as a baseline
import FFT
from Numeric import *
import math
import random
import sys
import struct
import fft
pi=math.pi
e=math.e
j=complex(0,1)
lims=(-32768,32767)
def randbuf(n,cpx=1):
res = array( [ random.uniform( lims[0],lims[1] ) for i in range(n) ] )
if cpx:
res = res + j*randbuf(n,0)
return res
def main():
from getopt import getopt
import popen2
opts,args = getopt( sys.argv[1:],'u:n:Rt:' )
opts=dict(opts)
exitcode=0
util = opts.get('-u','./kf_float')
try:
dims = [ int(d) for d in opts['-n'].split(',')]
cpx = opts.get('-R') is None
fmt=opts.get('-t','f')
except KeyError:
sys.stderr.write("""
usage: compfft.py
-n d1[,d2,d3...] : FFT dimension(s)
-u utilname : see sample_code/fftutil.c, default = ./kf_float
-R : real-optimized version\n""")
sys.exit(1)
x = fft.make_random( dims )
cmd = '%s -n %s ' % ( util, ','.join([ str(d) for d in dims]) )
if cpx:
xout = FFT.fftnd(x)
xout = reshape(xout,(size(xout),))
else:
cmd += '-R '
xout = FFT.real_fft(x)
proc = popen2.Popen3( cmd , bufsize=len(x) )
proc.tochild.write( dopack( x , fmt ,cpx ) )
proc.tochild.close()
xoutcomp = dounpack( proc.fromchild.read( ) , fmt ,1 )
#xoutcomp = reshape( xoutcomp , dims )
sig = xout * conjugate(xout)
sigpow = sum( sig )
diff = xout-xoutcomp
noisepow = sum( diff * conjugate(diff) )
snr = 10 * math.log10(abs( sigpow / noisepow ) )
if snr<100:
print xout
print xoutcomp
exitcode=1
print 'NFFT=%s,SNR = %f dB' % (str(dims),snr)
sys.exit(exitcode)
def dopack(x,fmt,cpx):
x = reshape( x, ( size(x),) )
if cpx:
s = ''.join( [ struct.pack('ff',c.real,c.imag) for c in x ] )
else:
s = ''.join( [ struct.pack('f',c) for c in x ] )
return s
def dounpack(x,fmt,cpx):
uf = fmt * ( len(x) / 4 )
s = struct.unpack(uf,x)
if cpx:
return array(s[::2]) + array( s[1::2] )*j
else:
return array(s )
if __name__ == "__main__":
main()

View File

@ -1,107 +0,0 @@
#!/usr/bin/env python
# Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
# This file is part of KISS FFT - https://github.com/mborgerding/kissfft
#
# SPDX-License-Identifier: BSD-3-Clause
# See COPYING file for more information.
from Numeric import *
from FFT import *
def make_random(len):
import random
res=[]
for i in range(int(len)):
r=random.uniform(-1,1)
i=random.uniform(-1,1)
res.append( complex(r,i) )
return res
def slowfilter(sig,h):
translen = len(h)-1
return convolve(sig,h)[translen:-translen]
def nextpow2(x):
return 2 ** math.ceil(math.log(x)/math.log(2))
def fastfilter(sig,h,nfft=None):
if nfft is None:
nfft = int( nextpow2( 2*len(h) ) )
H = fft( h , nfft )
scraplen = len(h)-1
keeplen = nfft-scraplen
res=[]
isdone = 0
lastidx = nfft
idx0 = 0
while not isdone:
idx1 = idx0 + nfft
if idx1 >= len(sig):
idx1 = len(sig)
lastidx = idx1-idx0
if lastidx <= scraplen:
break
isdone = 1
Fss = fft(sig[idx0:idx1],nfft)
fm = Fss * H
m = inverse_fft(fm)
res.append( m[scraplen:lastidx] )
idx0 += keeplen
return concatenate( res )
def main():
import sys
from getopt import getopt
opts,args = getopt(sys.argv[1:],'rn:l:')
opts=dict(opts)
siglen = int(opts.get('-l',1e4 ) )
hlen =50
nfft = int(opts.get('-n',128) )
usereal = opts.has_key('-r')
print 'nfft=%d'%nfft
# make a signal
sig = make_random( siglen )
# make an impulse response
h = make_random( hlen )
#h=[1]*2+[0]*3
if usereal:
sig=[c.real for c in sig]
h=[c.real for c in h]
# perform MAC filtering
yslow = slowfilter(sig,h)
#print '<YSLOW>',yslow,'</YSLOW>'
#yfast = fastfilter(sig,h,nfft)
yfast = utilfastfilter(sig,h,nfft,usereal)
#print yfast
print 'len(yslow)=%d'%len(yslow)
print 'len(yfast)=%d'%len(yfast)
diff = yslow-yfast
snr = 10*log10( abs( vdot(yslow,yslow) / vdot(diff,diff) ) )
print 'snr=%s' % snr
if snr < 10.0:
print 'h=',h
print 'sig=',sig[:5],'...'
print 'yslow=',yslow[:5],'...'
print 'yfast=',yfast[:5],'...'
def utilfastfilter(sig,h,nfft,usereal):
import compfft
import os
open( 'sig.dat','w').write( compfft.dopack(sig,'f',not usereal) )
open( 'h.dat','w').write( compfft.dopack(h,'f',not usereal) )
if usereal:
util = './fastconvr'
else:
util = './fastconv'
cmd = 'time %s -n %d -i sig.dat -h h.dat -o out.dat' % (util, nfft)
print cmd
ec = os.system(cmd)
print 'exited->',ec
return compfft.dounpack(open('out.dat').read(),'f',not usereal)
if __name__ == "__main__":
main()

View File

@ -1,201 +0,0 @@
#!/usr/bin/env python
# Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
# This file is part of KISS FFT - https://github.com/mborgerding/kissfft
#
# SPDX-License-Identifier: BSD-3-Clause
# See COPYING file for more information.
import math
import sys
import random
pi=math.pi
e=math.e
j=complex(0,1)
def fft(f,inv):
n=len(f)
if n==1:
return f
for p in 2,3,5:
if n%p==0:
break
else:
raise Exception('%s not factorable ' % n)
m = n/p
Fout=[]
for q in range(p): # 0,1
fp = f[q::p] # every p'th time sample
Fp = fft( fp ,inv)
Fout.extend( Fp )
for u in range(m):
scratch = Fout[u::m] # u to end in strides of m
for q1 in range(p):
k = q1*m + u # indices to Fout above that became scratch
Fout[ k ] = scratch[0] # cuz e**0==1 in loop below
for q in range(1,p):
if inv:
t = e ** ( j*2*pi*k*q/n )
else:
t = e ** ( -j*2*pi*k*q/n )
Fout[ k ] += scratch[q] * t
return Fout
def rifft(F):
N = len(F) - 1
Z = [0] * (N)
for k in range(N):
Fek = ( F[k] + F[-k-1].conjugate() )
Fok = ( F[k] - F[-k-1].conjugate() ) * e ** (j*pi*k/N)
Z[k] = Fek + j*Fok
fp = fft(Z , 1)
f = []
for c in fp:
f.append(c.real)
f.append(c.imag)
return f
def real_fft( f,inv ):
if inv:
return rifft(f)
N = len(f) / 2
res = f[::2]
ims = f[1::2]
fp = [ complex(r,i) for r,i in zip(res,ims) ]
print 'fft input ', fp
Fp = fft( fp ,0 )
print 'fft output ', Fp
F = [ complex(0,0) ] * ( N+1 )
F[0] = complex( Fp[0].real + Fp[0].imag , 0 )
for k in range(1,N/2+1):
tw = e ** ( -j*pi*(.5+float(k)/N ) )
F1k = Fp[k] + Fp[N-k].conjugate()
F2k = Fp[k] - Fp[N-k].conjugate()
F2k *= tw
F[k] = ( F1k + F2k ) * .5
F[N-k] = ( F1k - F2k ).conjugate() * .5
#F[N-k] = ( F1kp + e ** ( -j*pi*(.5+float(N-k)/N ) ) * F2kp ) * .5
#F[N-k] = ( F1k.conjugate() - tw.conjugate() * F2k.conjugate() ) * .5
F[N] = complex( Fp[0].real - Fp[0].imag , 0 )
return F
def main():
#fft_func = fft
fft_func = real_fft
tvec = [0.309655,0.815653,0.768570,0.591841,0.404767,0.637617,0.007803,0.012665]
Ftvec = [ complex(r,i) for r,i in zip(
[3.548571,-0.378761,-0.061950,0.188537,-0.566981,0.188537,-0.061950,-0.378761],
[0.000000,-1.296198,-0.848764,0.225337,0.000000,-0.225337,0.848764,1.296198] ) ]
F = fft_func( tvec,0 )
nerrs= 0
for i in range(len(Ftvec)/2 + 1):
if abs( F[i] - Ftvec[i] )> 1e-5:
print 'F[%d]: %s != %s' % (i,F[i],Ftvec[i])
nerrs += 1
print '%d errors in forward fft' % nerrs
if nerrs:
return
trec = fft_func( F , 1 )
for i in range(len(trec) ):
trec[i] /= len(trec)
for i in range(len(tvec) ):
if abs( trec[i] - tvec[i] )> 1e-5:
print 't[%d]: %s != %s' % (i,tvec[i],trec[i])
nerrs += 1
print '%d errors in reverse fft' % nerrs
def make_random(dims=[1]):
import Numeric
res = []
for i in range(dims[0]):
if len(dims)==1:
r=random.uniform(-1,1)
i=random.uniform(-1,1)
res.append( complex(r,i) )
else:
res.append( make_random( dims[1:] ) )
return Numeric.array(res)
def flatten(x):
import Numeric
ntotal = Numeric.product(Numeric.shape(x))
return Numeric.reshape(x,(ntotal,))
def randmat( ndims ):
dims=[]
for i in range( ndims ):
curdim = int( random.uniform(2,4) )
dims.append( curdim )
return make_random(dims )
def test_fftnd(ndims=3):
import FFT
import Numeric
x=randmat( ndims )
print 'dimensions=%s' % str( Numeric.shape(x) )
#print 'x=%s' %str(x)
xver = FFT.fftnd(x)
x2=myfftnd(x)
err = xver - x2
errf = flatten(err)
xverf = flatten(xver)
errpow = Numeric.vdot(errf,errf)+1e-10
sigpow = Numeric.vdot(xverf,xverf)+1e-10
snr = 10*math.log10(abs(sigpow/errpow) )
if snr<80:
print xver
print x2
print 'SNR=%sdB' % str( snr )
def myfftnd(x):
import Numeric
xf = flatten(x)
Xf = fftndwork( xf , Numeric.shape(x) )
return Numeric.reshape(Xf,Numeric.shape(x) )
def fftndwork(x,dims):
import Numeric
dimprod=Numeric.product( dims )
for k in range( len(dims) ):
cur_dim=dims[ k ]
stride=dimprod/cur_dim
next_x = [complex(0,0)]*len(x)
for i in range(stride):
next_x[i*cur_dim:(i+1)*cur_dim] = fft(x[i:(i+cur_dim)*stride:stride],0)
x = next_x
return x
if __name__ == "__main__":
try:
nd = int(sys.argv[1])
except:
nd=None
if nd:
test_fftnd( nd )
else:
sys.exit(0)

View File

@ -1,26 +0,0 @@
function maxabsdiff=tailscrap()
% test code for circular convolution with the scrapped portion
% at the tail of the buffer, rather than the front
%
% The idea is to rotate the zero-padded h (impulse response) buffer
% to the left nh-1 samples, rotating the junk samples as well.
% This could be very handy in avoiding buffer copies during fast filtering.
nh=10;
nfft=256;
h=rand(1,nh);
x=rand(1,nfft);
hpad=[ h(nh) zeros(1,nfft-nh) h(1:nh-1) ];
% baseline comparison
y1 = filter(h,1,x);
y1_notrans = y1(nh:nfft);
% fast convolution
y2 = ifft( fft(hpad) .* fft(x) );
y2_notrans=y2(1:nfft-nh+1);
maxabsdiff = max(abs(y2_notrans - y1_notrans))
end

View File

@ -1,81 +0,0 @@
/*
* Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
*
* SPDX-License-Identifier: BSD-3-Clause
* See COPYING file for more information.
*/
#include "kiss_fft.h"
void check(kiss_fft_cpx * in,kiss_fft_cpx * out,int nfft,int isinverse)
{
int bin,k;
double errpow=0,sigpow=0;
for (bin=0;bin<nfft;++bin) {
double ansr = 0;
double ansi = 0;
double difr;
double difi;
for (k=0;k<nfft;++k) {
double phase = -2*M_PI*bin*k/nfft;
double re = cos(phase);
double im = sin(phase);
if (isinverse)
im = -im;
#ifdef FIXED_POINT
re /= nfft;
im /= nfft;
#endif
ansr += in[k].r * re - in[k].i * im;
ansi += in[k].r * im + in[k].i * re;
}
difr = ansr - out[bin].r;
difi = ansi - out[bin].i;
errpow += difr*difr + difi*difi;
sigpow += ansr*ansr+ansi*ansi;
}
printf("nfft=%d inverse=%d,snr = %f\n",nfft,isinverse,10*log10(sigpow/errpow) );
}
void test1d(int nfft,int isinverse)
{
size_t buflen = sizeof(kiss_fft_cpx)*nfft;
kiss_fft_cpx * in = (kiss_fft_cpx*)malloc(buflen);
kiss_fft_cpx * out= (kiss_fft_cpx*)malloc(buflen);
kiss_fft_cfg cfg = kiss_fft_alloc(nfft,isinverse,0,0);
int k;
for (k=0;k<nfft;++k) {
in[k].r = (rand() % 65536) - 32768;
in[k].i = (rand() % 65536) - 32768;
}
kiss_fft(cfg,in,out);
check(in,out,nfft,isinverse);
free(in);
free(out);
free(cfg);
}
int main(int argc,char ** argv)
{
if (argc>1) {
int k;
for (k=1;k<argc;++k) {
test1d(atoi(argv[k]),0);
test1d(atoi(argv[k]),1);
}
}else{
test1d(32,0);
test1d(32,1);
}
return 0;
}