mirror of
https://github.com/mborgerding/kissfft.git
synced 2025-05-27 21:20:27 -04:00
first addition of kissfft.hh the C++ template fft engine
This commit is contained in:
parent
9dbaf860f2
commit
2b5477d54c
325
kissfft.hh
Normal file
325
kissfft.hh
Normal file
@ -0,0 +1,325 @@
|
||||
#ifndef KISSFFT_CLASS_HH
|
||||
#include <complex>
|
||||
#include <vector>
|
||||
|
||||
namespace kissfft_utils {
|
||||
|
||||
|
||||
template <class T_twid>
|
||||
struct traits
|
||||
{
|
||||
void fill_twiddles( std::complex<T_twid> * dst ,int nfft,bool inverse);
|
||||
|
||||
void prepare(
|
||||
std::vector< std::complex<T_twid> > & dst,
|
||||
int nfft,bool inverse,
|
||||
std::vector<int> & stageRadix,
|
||||
std::vector<int> & stageRemainder )
|
||||
{
|
||||
dst.resize(nfft);
|
||||
fill_twiddles( &dst[0],nfft,inverse);
|
||||
|
||||
//factorize
|
||||
//start factoring out 4's, then 2's, then 3,5,7,9,...
|
||||
int n= nfft;
|
||||
int p=4;
|
||||
do {
|
||||
while (n % p) {
|
||||
switch (p) {
|
||||
case 4: p = 2; break;
|
||||
case 2: p = 3; break;
|
||||
default: p += 2; break;
|
||||
}
|
||||
if (p*p>n)
|
||||
p=n;// no more factors
|
||||
}
|
||||
n /= p;
|
||||
stageRadix.push_back(p);
|
||||
stageRemainder.push_back(n);
|
||||
}while(n>1);
|
||||
}
|
||||
};
|
||||
|
||||
template <class T_twid>
|
||||
void traits<T_twid>::fill_twiddles( std::complex<T_twid> * dst ,int nfft,bool inverse)
|
||||
{
|
||||
T_twid phinc = (inverse?2:-2)* acos( (T_twid) -1) / nfft;
|
||||
for (int i=0;i<nfft;++i)
|
||||
dst[i] = exp( std::complex<T_twid>(0,i*phinc) );
|
||||
}
|
||||
/*
|
||||
template <>
|
||||
void traits<long double>::fill_twiddles(std::complex<long double> * dst ,int nfft,bool inverse)
|
||||
{
|
||||
long double phinc = (inverse?2:-2)*3.14159265358979323846264338327950288419716939937510L / nfft;
|
||||
for (int i=0;i<nfft;++i)
|
||||
dst[i] = std::complex<long double>(cosl(i*phinc),sinl(i*phinc));
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
template <typename T_Data,typename T_traits=kissfft_utils::traits<T_Data> >
|
||||
class kissfft
|
||||
{
|
||||
public:
|
||||
typedef T_traits traits_type;
|
||||
typedef T_Data scalar_type;
|
||||
typedef std::complex<scalar_type> cpx_type;
|
||||
|
||||
kissfft(int nfft,bool inverse,const traits_type & traits=traits_type() )
|
||||
:_nfft(nfft),_inverse(inverse),_traits(traits)
|
||||
{
|
||||
_traits.prepare(_twiddles, _nfft,_inverse ,_stageRadix, _stageRemainder);
|
||||
}
|
||||
|
||||
void transform(const cpx_type * src , cpx_type * dst)
|
||||
{
|
||||
kf_work(0, dst, src, 1);
|
||||
}
|
||||
|
||||
private:
|
||||
void kf_work( int stage,cpx_type * Fout, const cpx_type * f, const size_t fstride)
|
||||
{
|
||||
int p = _stageRadix[stage];
|
||||
int m = _stageRemainder[stage];
|
||||
cpx_type * Fout_beg = Fout;
|
||||
cpx_type * Fout_end = Fout + p*m;
|
||||
|
||||
if (m==1) {
|
||||
do{
|
||||
*Fout = *f;
|
||||
f += fstride;
|
||||
}while(++Fout != Fout_end );
|
||||
}else{
|
||||
do{
|
||||
// recursive call:
|
||||
// DFT of size m*p performed by doing
|
||||
// p instances of smaller DFTs of size m,
|
||||
// each one takes a decimated version of the input
|
||||
kf_work(stage+1, Fout , f, fstride*p);
|
||||
f += fstride;
|
||||
}while( (Fout += m) != Fout_end );
|
||||
}
|
||||
|
||||
Fout=Fout_beg;
|
||||
|
||||
// recombine the p smaller DFTs
|
||||
switch (p) {
|
||||
case 2: kf_bfly2(Fout,fstride,m); break;
|
||||
case 3: kf_bfly3(Fout,fstride,m); break;
|
||||
case 4: kf_bfly4(Fout,fstride,m); break;
|
||||
case 5: kf_bfly5(Fout,fstride,m); break;
|
||||
default: kf_bfly_generic(Fout,fstride,m,p); break;
|
||||
}
|
||||
}
|
||||
|
||||
// these were #define macros in the original kiss_fft
|
||||
void C_ADD( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a+b;}
|
||||
void C_MUL( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a*b;}
|
||||
void C_SUB( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a-b;}
|
||||
void C_ADDTO( cpx_type & c,const cpx_type & a) { c+=a;}
|
||||
void C_FIXDIV( cpx_type & c,int n) {} // NO-OP for float types
|
||||
scalar_type S_MUL( const scalar_type & a,const scalar_type & b) { return a*b;}
|
||||
scalar_type HALF_OF( const scalar_type & a) { return a*.5;}
|
||||
void C_MULBYSCALAR(cpx_type & c,const scalar_type & a) {c*=a;}
|
||||
|
||||
void kf_bfly2( cpx_type * Fout, const size_t fstride, int m)
|
||||
{
|
||||
cpx_type * Fout2;
|
||||
cpx_type * tw1 = &_twiddles[0];
|
||||
cpx_type t;
|
||||
Fout2 = Fout + m;
|
||||
do{
|
||||
C_FIXDIV(*Fout,2); C_FIXDIV(*Fout2,2);
|
||||
|
||||
C_MUL (t, *Fout2 , *tw1);
|
||||
tw1 += fstride;
|
||||
C_SUB( *Fout2 , *Fout , t );
|
||||
C_ADDTO( *Fout , t );
|
||||
++Fout2;
|
||||
++Fout;
|
||||
}while (--m);
|
||||
}
|
||||
|
||||
void kf_bfly4( cpx_type * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
cpx_type *tw1,*tw2,*tw3;
|
||||
cpx_type scratch[6];
|
||||
size_t k=m;
|
||||
const size_t m2=2*m;
|
||||
const size_t m3=3*m;
|
||||
|
||||
tw3 = tw2 = tw1 = &_twiddles[0];
|
||||
|
||||
do {
|
||||
C_MUL(scratch[0],Fout[m] , *tw1 );
|
||||
C_MUL(scratch[1],Fout[m2] , *tw2 );
|
||||
C_MUL(scratch[2],Fout[m3] , *tw3 );
|
||||
|
||||
C_SUB( scratch[5] , *Fout, scratch[1] );
|
||||
C_ADDTO(*Fout, scratch[1]);
|
||||
C_ADD( scratch[3] , scratch[0] , scratch[2] );
|
||||
C_SUB( scratch[4] , scratch[0] , scratch[2] );
|
||||
C_SUB( Fout[m2], *Fout, scratch[3] );
|
||||
tw1 += fstride;
|
||||
tw2 += fstride*2;
|
||||
tw3 += fstride*3;
|
||||
C_ADDTO( *Fout , scratch[3] );
|
||||
|
||||
if(_inverse) {
|
||||
Fout[m] = cpx_type( scratch[5].real() - scratch[4].imag() , scratch[5].imag() + scratch[4].real() );
|
||||
Fout[m3] = cpx_type( scratch[5].real() + scratch[4].imag() , scratch[5].imag() - scratch[4].real() );
|
||||
}else{
|
||||
Fout[m] = cpx_type( scratch[5].real() + scratch[4].imag() , scratch[5].imag() - scratch[4].real() );
|
||||
Fout[m3] = cpx_type( scratch[5].real() - scratch[4].imag() , scratch[5].imag() + scratch[4].real() );
|
||||
}
|
||||
++Fout;
|
||||
}while(--k);
|
||||
}
|
||||
|
||||
void kf_bfly3( cpx_type * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
size_t k=m;
|
||||
const size_t m2 = 2*m;
|
||||
cpx_type *tw1,*tw2;
|
||||
cpx_type scratch[5];
|
||||
cpx_type epi3;
|
||||
epi3 = _twiddles[fstride*m];
|
||||
|
||||
tw1=tw2=&_twiddles[0];
|
||||
|
||||
do{
|
||||
C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3);
|
||||
|
||||
C_MUL(scratch[1],Fout[m] , *tw1);
|
||||
C_MUL(scratch[2],Fout[m2] , *tw2);
|
||||
|
||||
C_ADD(scratch[3],scratch[1],scratch[2]);
|
||||
C_SUB(scratch[0],scratch[1],scratch[2]);
|
||||
tw1 += fstride;
|
||||
tw2 += fstride*2;
|
||||
|
||||
Fout[m] = cpx_type( Fout->real() - HALF_OF(scratch[3].real() ) , Fout->imag() - HALF_OF(scratch[3].imag() ) );
|
||||
|
||||
C_MULBYSCALAR( scratch[0] , epi3.imag() );
|
||||
|
||||
C_ADDTO(*Fout,scratch[3]);
|
||||
|
||||
Fout[m2] = cpx_type( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
|
||||
|
||||
C_ADDTO( Fout[m] , cpx_type( -scratch[0].imag(),scratch[0].real() ) );
|
||||
++Fout;
|
||||
}while(--k);
|
||||
}
|
||||
|
||||
void kf_bfly5( cpx_type * Fout, const size_t fstride, const size_t m)
|
||||
{
|
||||
cpx_type *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
|
||||
int u;
|
||||
cpx_type scratch[13];
|
||||
cpx_type * twiddles = &_twiddles[0];
|
||||
cpx_type *tw;
|
||||
cpx_type ya,yb;
|
||||
ya = twiddles[fstride*m];
|
||||
yb = twiddles[fstride*2*m];
|
||||
|
||||
Fout0=Fout;
|
||||
Fout1=Fout0+m;
|
||||
Fout2=Fout0+2*m;
|
||||
Fout3=Fout0+3*m;
|
||||
Fout4=Fout0+4*m;
|
||||
|
||||
tw=twiddles;
|
||||
for ( u=0; u<m; ++u ) {
|
||||
C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5);
|
||||
scratch[0] = *Fout0;
|
||||
|
||||
C_MUL(scratch[1] ,*Fout1, tw[u*fstride]);
|
||||
C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]);
|
||||
C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]);
|
||||
C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]);
|
||||
|
||||
C_ADD( scratch[7],scratch[1],scratch[4]);
|
||||
C_SUB( scratch[10],scratch[1],scratch[4]);
|
||||
C_ADD( scratch[8],scratch[2],scratch[3]);
|
||||
C_SUB( scratch[9],scratch[2],scratch[3]);
|
||||
|
||||
C_ADDTO( *Fout0, scratch[7]);
|
||||
C_ADDTO( *Fout0, scratch[8]);
|
||||
|
||||
scratch[5] = scratch[0] + cpx_type(
|
||||
S_MUL(scratch[7].real(),ya.real() ) + S_MUL(scratch[8].real() ,yb.real() ),
|
||||
S_MUL(scratch[7].imag(),ya.real()) + S_MUL(scratch[8].imag(),yb.real())
|
||||
);
|
||||
|
||||
scratch[6] = cpx_type(
|
||||
S_MUL(scratch[10].imag(),ya.imag()) + S_MUL(scratch[9].imag(),yb.imag()),
|
||||
-S_MUL(scratch[10].real(),ya.imag()) - S_MUL(scratch[9].real(),yb.imag())
|
||||
);
|
||||
|
||||
C_SUB(*Fout1,scratch[5],scratch[6]);
|
||||
C_ADD(*Fout4,scratch[5],scratch[6]);
|
||||
|
||||
scratch[11] = scratch[0] +
|
||||
cpx_type(
|
||||
S_MUL(scratch[7].real(),yb.real()) + S_MUL(scratch[8].real(),ya.real()),
|
||||
S_MUL(scratch[7].imag(),yb.real()) + S_MUL(scratch[8].imag(),ya.real())
|
||||
);
|
||||
|
||||
scratch[12] = cpx_type(
|
||||
-S_MUL(scratch[10].imag(),yb.imag()) + S_MUL(scratch[9].imag(),ya.imag()),
|
||||
S_MUL(scratch[10].real(),yb.imag()) - S_MUL(scratch[9].real(),ya.imag())
|
||||
);
|
||||
|
||||
C_ADD(*Fout2,scratch[11],scratch[12]);
|
||||
C_SUB(*Fout3,scratch[11],scratch[12]);
|
||||
|
||||
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
|
||||
}
|
||||
}
|
||||
|
||||
/* perform the butterfly for one stage of a mixed radix FFT */
|
||||
void kf_bfly_generic(
|
||||
cpx_type * Fout,
|
||||
const size_t fstride,
|
||||
int m,
|
||||
int p
|
||||
)
|
||||
{
|
||||
int u,k,q1,q;
|
||||
cpx_type * twiddles = &_twiddles[0];
|
||||
cpx_type t;
|
||||
int Norig = _nfft;
|
||||
cpx_type scratchbuf[p];
|
||||
|
||||
for ( u=0; u<m; ++u ) {
|
||||
k=u;
|
||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||
scratchbuf[q1] = Fout[ k ];
|
||||
C_FIXDIV(scratchbuf[q1],p);
|
||||
k += m;
|
||||
}
|
||||
|
||||
k=u;
|
||||
for ( q1=0 ; q1<p ; ++q1 ) {
|
||||
int twidx=0;
|
||||
Fout[ k ] = scratchbuf[0];
|
||||
for (q=1;q<p;++q ) {
|
||||
twidx += fstride * k;
|
||||
if (twidx>=Norig) twidx-=Norig;
|
||||
C_MUL(t,scratchbuf[q] , twiddles[twidx] );
|
||||
C_ADDTO( Fout[ k ] ,t);
|
||||
}
|
||||
k += m;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int _nfft;
|
||||
bool _inverse;
|
||||
std::vector<cpx_type> _twiddles;
|
||||
std::vector<int> _stageRadix;
|
||||
std::vector<int> _stageRemainder;
|
||||
traits_type _traits;
|
||||
};
|
||||
#endif
|
@ -95,5 +95,11 @@ selftest.c:
|
||||
selftest_short.c:
|
||||
./mk_test.py -s 10 12 14 > selftest_short.c
|
||||
|
||||
|
||||
CXXFLAGS=-O3 -ffast-math -fomit-frame-pointer -I.. -I../tools -W -Wall
|
||||
testcpp: testcpp.cc ../kissfft.hh
|
||||
$(CXX) -o $@ $(CXXFLAGS) -lm testcpp.cc
|
||||
|
||||
|
||||
clean:
|
||||
rm -f *~ bm_* st_* tr_* kf_* tkfc_* ff_* ffr_* *.pyc *.pyo *.dat
|
||||
|
76
test/testcpp.cc
Normal file
76
test/testcpp.cc
Normal file
@ -0,0 +1,76 @@
|
||||
#include "kissfft.hh"
|
||||
#include <iostream>
|
||||
#include <cstdlib>
|
||||
#include <typeinfo>
|
||||
|
||||
#include <sys/time.h>
|
||||
static inline
|
||||
double curtime(void)
|
||||
{
|
||||
struct timeval tv;
|
||||
gettimeofday(&tv, NULL);
|
||||
return (double)tv.tv_sec + (double)tv.tv_usec*.000001;
|
||||
}
|
||||
|
||||
using namespace std;
|
||||
|
||||
template <class T>
|
||||
void dotest(int nfft)
|
||||
{
|
||||
typedef kissfft<T> FFT;
|
||||
typedef std::complex<T> cpx_type;
|
||||
|
||||
cout << typeid(T).name() << ":nfft=" << nfft <<endl;
|
||||
|
||||
FFT fft(nfft,false);
|
||||
|
||||
vector<cpx_type> inbuf(nfft);
|
||||
vector<cpx_type> outbuf(nfft);
|
||||
#if 0
|
||||
for (int k=0;k<nfft;++k)
|
||||
inbuf[k]= cpx_type(
|
||||
cosl(2*k* M_PIl / nfft ),
|
||||
sinl(2*k* M_PIl / nfft ) );
|
||||
#else
|
||||
for (int k=0;k<nfft;++k)
|
||||
inbuf[k]= cpx_type(
|
||||
(T)(rand()/(double)RAND_MAX - .5),
|
||||
(T)(rand()/(double)RAND_MAX - .5) );
|
||||
#endif
|
||||
fft.transform( &inbuf[0] , &outbuf[0] );
|
||||
|
||||
long double totalpower=0;
|
||||
long double difpower=0;
|
||||
for (int k0=0;k0<nfft;++k0) {
|
||||
complex<long double> acc = 0;
|
||||
long double phinc = 2*k0* M_PIl / nfft;
|
||||
for (int k1=0;k1<nfft;++k1) {
|
||||
complex<long double> x(inbuf[k1].real(),inbuf[k1].imag());
|
||||
acc += x * exp( complex<long double>(0,-k1*phinc) );
|
||||
}
|
||||
totalpower += norm(acc);
|
||||
complex<long double> x(outbuf[k0].real(),outbuf[k0].imag());
|
||||
complex<long double> dif = acc - x;
|
||||
difpower += norm(dif);
|
||||
}
|
||||
cout << "RMSE:" << sqrt(difpower/totalpower) << "\t";
|
||||
|
||||
double t0 = curtime();
|
||||
int nits=20e6/nfft;
|
||||
for (int k=0;k<nits;++k) {
|
||||
fft.transform( &inbuf[0] , &outbuf[0] );
|
||||
}
|
||||
double t1 = curtime();
|
||||
cout << "MSPS:" << ( (nits*nfft)*1e-6/ (t1-t0) ) << endl;
|
||||
}
|
||||
|
||||
int main(int argc,char ** argv)
|
||||
{
|
||||
dotest<float>(32);
|
||||
dotest<double>(32);
|
||||
dotest<long double>(32);
|
||||
|
||||
dotest<float>(1024); dotest<double>(1024); dotest<long double>(1024);
|
||||
dotest<float>(1800); dotest<double>(1800); dotest<long double>(1800);
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user