Files
kimageformats/src/imageformats/rgb.cpp
Martin T. H. Sandsmark 8562ce18f1 Add some sanity and bounds checking
Since QImage does sanity checking for overflows and stuff wrt.
dimensions and depth, check for QImage::isNull() as early as possible to
see if there's some funky business going on.

Also tried to add some checks wherever we wrote to "raw" memory.

Unit tests pass, and tested converting some files from
https://samples.ffmpeg.org/image-samples/ to pngs, and that seemed to
work.

Reviewed By: aacid

Differential Revision: https://phabricator.kde.org/D24367
2020-05-10 18:06:56 +02:00

779 lines
18 KiB
C++

// kimgio module for SGI images
//
// Copyright (C) 2004 Melchior FRANZ <mfranz@kde.org>
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the Lesser GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
/* this code supports:
* reading:
* everything, except images with 1 dimension or images with
* mapmode != NORMAL (e.g. dithered); Images with 16 bit
* precision or more than 4 layers are stripped down.
* writing:
* Run Length Encoded (RLE) or Verbatim (uncompressed)
* (whichever is smaller)
*
* Please report if you come across rgb/rgba/sgi/bw files that aren't
* recognized. Also report applications that can't deal with images
* saved by this filter.
*/
#include "rgb_p.h"
#include <QMap>
#include <QVector>
#include <QImage>
#include <QDebug>
class RLEData : public QVector<uchar>
{
public:
RLEData() {}
RLEData(const uchar *d, uint l, uint o) : _offset(o)
{
for (uint i = 0; i < l; i++) {
append(d[i]);
}
}
bool operator<(const RLEData &) const;
void write(QDataStream &s);
uint offset() const
{
return _offset;
}
private:
uint _offset;
};
class RLEMap : public QMap<RLEData, uint>
{
public:
RLEMap() : _counter(0), _offset(0) {}
uint insert(const uchar *d, uint l);
QVector<const RLEData *> vector();
void setBaseOffset(uint o)
{
_offset = o;
}
private:
uint _counter;
uint _offset;
};
class SGIImage
{
public:
SGIImage(QIODevice *device);
~SGIImage();
bool readImage(QImage &);
bool writeImage(const QImage &);
private:
enum { NORMAL, DITHERED, SCREEN, COLORMAP }; // colormap
QIODevice *_dev;
QDataStream _stream;
quint8 _rle;
quint8 _bpc;
quint16 _dim;
quint16 _xsize;
quint16 _ysize;
quint16 _zsize;
quint32 _pixmin;
quint32 _pixmax;
char _imagename[80];
quint32 _colormap;
quint32 *_starttab;
quint32 *_lengthtab;
QByteArray _data;
QByteArray::Iterator _pos;
RLEMap _rlemap;
QVector<const RLEData *> _rlevector;
uint _numrows;
bool readData(QImage &);
bool getRow(uchar *dest);
void writeHeader();
void writeRle();
void writeVerbatim(const QImage &);
bool scanData(const QImage &);
uint compact(uchar *, uchar *);
uchar intensity(uchar);
};
SGIImage::SGIImage(QIODevice *io) :
_starttab(nullptr),
_lengthtab(nullptr)
{
_dev = io;
_stream.setDevice(_dev);
}
SGIImage::~SGIImage()
{
delete[] _starttab;
delete[] _lengthtab;
}
///////////////////////////////////////////////////////////////////////////////
bool SGIImage::getRow(uchar *dest)
{
int n, i;
if (!_rle) {
for (i = 0; i < _xsize; i++) {
if (_pos >= _data.end()) {
return false;
}
dest[i] = uchar(*_pos);
_pos += _bpc;
}
return true;
}
for (i = 0; i < _xsize;) {
if (_bpc == 2) {
_pos++;
}
if (_pos >= _data.end()) {
return false;
}
n = *_pos & 0x7f;
if (!n) {
break;
}
if (*_pos++ & 0x80) {
for (; i < _xsize && _pos < _data.end() && n--; i++) {
*dest++ = *_pos;
_pos += _bpc;
}
} else {
for (; i < _xsize && n--; i++) {
*dest++ = *_pos;
}
_pos += _bpc;
}
}
return i == _xsize;
}
bool SGIImage::readData(QImage &img)
{
QRgb *c;
quint32 *start = _starttab;
QByteArray lguard(_xsize, 0);
uchar *line = (uchar *)lguard.data();
unsigned x, y;
if (!_rle) {
_pos = _data.begin();
}
for (y = 0; y < _ysize; y++) {
if (_rle) {
_pos = _data.begin() + *start++;
}
if (!getRow(line)) {
return false;
}
c = (QRgb *)img.scanLine(_ysize - y - 1);
for (x = 0; x < _xsize; x++, c++) {
*c = qRgb(line[x], line[x], line[x]);
}
}
if (_zsize == 1) {
return true;
}
if (_zsize != 2) {
for (y = 0; y < _ysize; y++) {
if (_rle) {
_pos = _data.begin() + *start++;
}
if (!getRow(line)) {
return false;
}
c = (QRgb *)img.scanLine(_ysize - y - 1);
for (x = 0; x < _xsize; x++, c++) {
*c = qRgb(qRed(*c), line[x], line[x]);
}
}
for (y = 0; y < _ysize; y++) {
if (_rle) {
_pos = _data.begin() + *start++;
}
if (!getRow(line)) {
return false;
}
c = (QRgb *)img.scanLine(_ysize - y - 1);
for (x = 0; x < _xsize; x++, c++) {
*c = qRgb(qRed(*c), qGreen(*c), line[x]);
}
}
if (_zsize == 3) {
return true;
}
}
for (y = 0; y < _ysize; y++) {
if (_rle) {
_pos = _data.begin() + *start++;
}
if (!getRow(line)) {
return false;
}
c = (QRgb *)img.scanLine(_ysize - y - 1);
for (x = 0; x < _xsize; x++, c++) {
*c = qRgba(qRed(*c), qGreen(*c), qBlue(*c), line[x]);
}
}
return true;
}
bool SGIImage::readImage(QImage &img)
{
qint8 u8;
qint16 u16;
qint32 u32;
// qDebug() << "reading rgb ";
// magic
_stream >> u16;
if (u16 != 0x01da) {
return false;
}
// verbatim/rle
_stream >> _rle;
// qDebug() << (_rle ? "RLE" : "verbatim");
if (_rle > 1) {
return false;
}
// bytes per channel
_stream >> _bpc;
// qDebug() << "bytes per channel: " << int(_bpc);
if (_bpc == 1)
;
else if (_bpc == 2) {
// qDebug() << "dropping least significant byte";
} else {
return false;
}
// number of dimensions
_stream >> _dim;
// qDebug() << "dimensions: " << _dim;
if (_dim < 1 || _dim > 3) {
return false;
}
_stream >> _xsize >> _ysize >> _zsize >> _pixmin >> _pixmax >> u32;
// qDebug() << "x: " << _xsize;
// qDebug() << "y: " << _ysize;
// qDebug() << "z: " << _zsize;
// name
_stream.readRawData(_imagename, 80);
_imagename[79] = '\0';
_stream >> _colormap;
// qDebug() << "colormap: " << _colormap;
if (_colormap != NORMAL) {
return false; // only NORMAL supported
}
for (int i = 0; i < 404; i++) {
_stream >> u8;
}
if (_dim == 1) {
// qDebug() << "1-dimensional images aren't supported yet";
return false;
}
if (_stream.atEnd()) {
return false;
}
img = QImage(_xsize, _ysize, QImage::Format_RGB32);
if (img.isNull()) {
qWarning() << "Failed to allocate image, invalid dimensions?" << QSize(_xsize, _ysize);
return false;
}
if (_zsize == 0 )
return false;
if (_zsize == 2 || _zsize == 4) {
img = img.convertToFormat(QImage::Format_ARGB32);
} else if (_zsize > 4) {
// qDebug() << "using first 4 of " << _zsize << " channels";
// Only let this continue if it won't cause a int overflow later
// this is most likely a broken file anyway
if (_ysize > std::numeric_limits<int>::max() / _zsize)
return false;
}
_numrows = _ysize * _zsize;
if (_rle) {
uint l;
_starttab = new quint32[_numrows];
for (l = 0; !_stream.atEnd() && l < _numrows; l++) {
_stream >> _starttab[l];
_starttab[l] -= 512 + _numrows * 2 * sizeof(quint32);
}
for (; l < _numrows; l++) {
_starttab[l] = 0;
}
_lengthtab = new quint32[_numrows];
for (l = 0; l < _numrows; l++) {
_stream >> _lengthtab[l];
}
}
_data = _dev->readAll();
// sanity check
if (_rle)
for (uint o = 0; o < _numrows; o++)
// don't change to greater-or-equal!
if (_starttab[o] + _lengthtab[o] > (uint)_data.size()) {
// qDebug() << "image corrupt (sanity check failed)";
return false;
}
if (!readData(img)) {
// qDebug() << "image corrupt (incomplete scanline)";
return false;
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
void RLEData::write(QDataStream &s)
{
for (int i = 0; i < size(); i++) {
s << at(i);
}
}
bool RLEData::operator<(const RLEData &b) const
{
uchar ac, bc;
for (int i = 0; i < qMin(size(), b.size()); i++) {
ac = at(i);
bc = b[i];
if (ac != bc) {
return ac < bc;
}
}
return size() < b.size();
}
uint RLEMap::insert(const uchar *d, uint l)
{
RLEData data = RLEData(d, l, _offset);
Iterator it = find(data);
if (it != end()) {
return it.value();
}
_offset += l;
return QMap<RLEData, uint>::insert(data, _counter++).value();
}
QVector<const RLEData *> RLEMap::vector()
{
QVector<const RLEData *> v(size());
for (Iterator it = begin(); it != end(); ++it) {
v.replace(it.value(), &it.key());
}
return v;
}
uchar SGIImage::intensity(uchar c)
{
if (c < _pixmin) {
_pixmin = c;
}
if (c > _pixmax) {
_pixmax = c;
}
return c;
}
uint SGIImage::compact(uchar *d, uchar *s)
{
uchar *dest = d, *src = s, patt, *t, *end = s + _xsize;
int i, n;
while (src < end) {
for (n = 0, t = src; t + 2 < end && !(*t == t[1] && *t == t[2]); t++) {
n++;
}
while (n) {
i = n > 126 ? 126 : n;
n -= i;
*dest++ = 0x80 | i;
while (i--) {
*dest++ = *src++;
}
}
if (src == end) {
break;
}
patt = *src++;
for (n = 1; src < end && *src == patt; src++) {
n++;
}
while (n) {
i = n > 126 ? 126 : n;
n -= i;
*dest++ = i;
*dest++ = patt;
}
}
*dest++ = 0;
return dest - d;
}
bool SGIImage::scanData(const QImage &img)
{
quint32 *start = _starttab;
QByteArray lineguard(_xsize * 2, 0);
QByteArray bufguard(_xsize, 0);
uchar *line = (uchar *)lineguard.data();
uchar *buf = (uchar *)bufguard.data();
const QRgb *c;
unsigned x, y;
uint len;
for (y = 0; y < _ysize; y++) {
const int yPos = _ysize - y - 1; // scanline doesn't do any sanity checking
if (yPos >= img.height()) {
qWarning() << "Failed to get scanline for" << yPos;
return false;
}
c = reinterpret_cast<const QRgb *>(img.scanLine(yPos));
for (x = 0; x < _xsize; x++) {
buf[x] = intensity(qRed(*c++));
}
len = compact(line, buf);
*start++ = _rlemap.insert(line, len);
}
if (_zsize == 1) {
return true;
}
if (_zsize != 2) {
for (y = 0; y < _ysize; y++) {
const int yPos = _ysize - y - 1;
if (yPos >= img.height()) {
qWarning() << "Failed to get scanline for" << yPos;
return false;
}
c = reinterpret_cast<const QRgb *>(img.scanLine(yPos));
for (x = 0; x < _xsize; x++) {
buf[x] = intensity(qGreen(*c++));
}
len = compact(line, buf);
*start++ = _rlemap.insert(line, len);
}
for (y = 0; y < _ysize; y++) {
const int yPos = _ysize - y - 1;
if (yPos >= img.height()) {
qWarning() << "Failed to get scanline for" << yPos;
return false;
}
c = reinterpret_cast<const QRgb *>(img.scanLine(yPos));
for (x = 0; x < _xsize; x++) {
buf[x] = intensity(qBlue(*c++));
}
len = compact(line, buf);
*start++ = _rlemap.insert(line, len);
}
if (_zsize == 3) {
return true;
}
}
for (y = 0; y < _ysize; y++) {
const int yPos = _ysize - y - 1;
if (yPos >= img.height()) {
qWarning() << "Failed to get scanline for" << yPos;
return false;
}
c = reinterpret_cast<const QRgb *>(img.scanLine(yPos));
for (x = 0; x < _xsize; x++) {
buf[x] = intensity(qAlpha(*c++));
}
len = compact(line, buf);
*start++ = _rlemap.insert(line, len);
}
return true;
}
void SGIImage::writeHeader()
{
_stream << quint16(0x01da);
_stream << _rle << _bpc << _dim;
_stream << _xsize << _ysize << _zsize;
_stream << _pixmin << _pixmax;
_stream << quint32(0);
for (int i = 0; i < 80; i++) {
_imagename[i] = '\0';
}
_stream.writeRawData(_imagename, 80);
_stream << _colormap;
for (int i = 0; i < 404; i++) {
_stream << quint8(0);
}
}
void SGIImage::writeRle()
{
_rle = 1;
// qDebug() << "writing RLE data";
writeHeader();
uint i;
// write start table
for (i = 0; i < _numrows; i++) {
_stream << quint32(_rlevector[_starttab[i]]->offset());
}
// write length table
for (i = 0; i < _numrows; i++) {
_stream << quint32(_rlevector[_starttab[i]]->size());
}
// write data
for (i = 0; (int)i < _rlevector.size(); i++) {
const_cast<RLEData *>(_rlevector[i])->write(_stream);
}
}
void SGIImage::writeVerbatim(const QImage &img)
{
_rle = 0;
// qDebug() << "writing verbatim data";
writeHeader();
const QRgb *c;
unsigned x, y;
for (y = 0; y < _ysize; y++) {
c = reinterpret_cast<const QRgb *>(img.scanLine(_ysize - y - 1));
for (x = 0; x < _xsize; x++) {
_stream << quint8(qRed(*c++));
}
}
if (_zsize == 1) {
return;
}
if (_zsize != 2) {
for (y = 0; y < _ysize; y++) {
c = reinterpret_cast<const QRgb *>(img.scanLine(_ysize - y - 1));
for (x = 0; x < _xsize; x++) {
_stream << quint8(qGreen(*c++));
}
}
for (y = 0; y < _ysize; y++) {
c = reinterpret_cast<const QRgb *>(img.scanLine(_ysize - y - 1));
for (x = 0; x < _xsize; x++) {
_stream << quint8(qBlue(*c++));
}
}
if (_zsize == 3) {
return;
}
}
for (y = 0; y < _ysize; y++) {
c = reinterpret_cast<const QRgb *>(img.scanLine(_ysize - y - 1));
for (x = 0; x < _xsize; x++) {
_stream << quint8(qAlpha(*c++));
}
}
}
bool SGIImage::writeImage(const QImage &image)
{
// qDebug() << "writing "; // TODO add filename
QImage img = image;
if (img.allGray()) {
_dim = 2, _zsize = 1;
} else {
_dim = 3, _zsize = 3;
}
if (img.format() == QImage::Format_ARGB32) {
_dim = 3, _zsize++;
}
img = img.convertToFormat(QImage::Format_RGB32);
if (img.isNull()) {
// qDebug() << "can't convert image to depth 32";
return false;
}
_bpc = 1;
_xsize = img.width();
_ysize = img.height();
_pixmin = ~0u;
_pixmax = 0;
_colormap = NORMAL;
_numrows = _ysize * _zsize;
_starttab = new quint32[_numrows];
_rlemap.setBaseOffset(512 + _numrows * 2 * sizeof(quint32));
if (!scanData(img)) {
// qDebug() << "this can't happen";
return false;
}
_rlevector = _rlemap.vector();
long verbatim_size = _numrows * _xsize;
long rle_size = _numrows * 2 * sizeof(quint32);
for (int i = 0; i < _rlevector.size(); i++) {
rle_size += _rlevector[i]->size();
}
// qDebug() << "minimum intensity: " << _pixmin;
// qDebug() << "maximum intensity: " << _pixmax;
// qDebug() << "saved scanlines: " << _numrows - _rlemap.size();
// qDebug() << "total savings: " << (verbatim_size - rle_size) << " bytes";
// qDebug() << "compression: " << (rle_size * 100.0 / verbatim_size) << '%';
if (verbatim_size <= rle_size) {
writeVerbatim(img);
} else {
writeRle();
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
RGBHandler::RGBHandler()
{
}
bool RGBHandler::canRead() const
{
if (canRead(device())) {
setFormat("rgb");
return true;
}
return false;
}
bool RGBHandler::read(QImage *outImage)
{
SGIImage sgi(device());
return sgi.readImage(*outImage);
}
bool RGBHandler::write(const QImage &image)
{
SGIImage sgi(device());
return sgi.writeImage(image);
}
bool RGBHandler::canRead(QIODevice *device)
{
if (!device) {
qWarning("RGBHandler::canRead() called with no device");
return false;
}
const qint64 oldPos = device->pos();
const QByteArray head = device->readLine(64);
int readBytes = head.size();
if (device->isSequential()) {
while (readBytes > 0) {
device->ungetChar(head[readBytes-- - 1]);
}
} else {
device->seek(oldPos);
}
return head.size() >= 4 && head.startsWith("\x01\xda") && (head[2] == 0 || head[2] == 1) && (head[3] == 1 || head[3] == 2);
}
///////////////////////////////////////////////////////////////////////////////
QImageIOPlugin::Capabilities RGBPlugin::capabilities(QIODevice *device, const QByteArray &format) const
{
if (format == "rgb" || format == "rgba" ||
format == "bw" || format == "sgi") {
return Capabilities(CanRead | CanWrite);
}
if (!format.isEmpty()) {
return {};
}
if (!device->isOpen()) {
return {};
}
Capabilities cap;
if (device->isReadable() && RGBHandler::canRead(device)) {
cap |= CanRead;
}
if (device->isWritable()) {
cap |= CanWrite;
}
return cap;
}
QImageIOHandler *RGBPlugin::create(QIODevice *device, const QByteArray &format) const
{
QImageIOHandler *handler = new RGBHandler;
handler->setDevice(device);
handler->setFormat(format);
return handler;
}