Mirco Miranda 6f44c5c52a PSD: Improve alpha detection
BUG: 182496
2022-07-25 19:34:57 +00:00

1306 lines
38 KiB
C++

/*
Photoshop File Format support for QImage.
SPDX-FileCopyrightText: 2003 Ignacio Castaño <castano@ludicon.com>
SPDX-FileCopyrightText: 2015 Alex Merry <alex.merry@kde.org>
SPDX-FileCopyrightText: 2022 Mirco Miranda <mircomir@outlook.com>
SPDX-License-Identifier: LGPL-2.0-or-later
*/
/*
* This code is based on Thacher Ulrich PSD loading code released
* into the public domain. See: http://tulrich.com/geekstuff/
*/
/*
* Documentation on this file format is available at
* http://www.adobe.com/devnet-apps/photoshop/fileformatashtml/
*/
/*
* Limitations of the current code:
* - 32-bit float image are converted to 16-bit integer image.
* NOTE: Qt 6.2 allow 32-bit float images (RGB only)
* - Other color spaces cannot directly be read due to lack of QImage support for
* color spaces other than RGB (and Grayscale). Where possible, a conversion
* to RGB is done:
* - CMYK images are converted using an approximated way that ignores the color
* information (ICC profile).
* - LAB images are converted to sRGB using literature formulas.
*
* NOTE: The best way to convert between different color spaces is to use a
* color management engine (e.g. LittleCMS).
*/
#include "psd_p.h"
#include "util_p.h"
#include <QDataStream>
#include <QDebug>
#include <QImage>
#include <QColorSpace>
#include <cmath>
typedef quint32 uint;
typedef quint16 ushort;
typedef quint8 uchar;
/* The fast LAB conversion converts the image to linear sRgb instead to sRgb.
* This should not be a problem because the Qt's QColorSpace supports the linear
* sRgb colorspace.
*
* Using linear conversion, the loading speed is improved by 4x. Anyway, if you are using
* an software that discard color info, you should comment it.
*
* At the time I'm writing (07/2022), Gwenview and Krita supports linear sRgb but KDE
* preview creator does not. This is the why, for now, it is disabled.
*/
//#define PSD_FAST_LAB_CONVERSION
namespace // Private.
{
enum Signature {
S_8BIM = 0x3842494D, // '8BIM'
S_8B64 = 0x38423634, // '8B64'
S_MeSa = 0x4D655361 // 'MeSa'
};
enum ColorMode {
CM_BITMAP = 0,
CM_GRAYSCALE = 1,
CM_INDEXED = 2,
CM_RGB = 3,
CM_CMYK = 4,
CM_MULTICHANNEL = 7,
CM_DUOTONE = 8,
CM_LABCOLOR = 9,
};
enum ImageResourceId : quint16 {
IRI_RESOLUTIONINFO = 0x03ED,
IRI_ICCPROFILE = 0x040F,
IRI_TRANSPARENCYINDEX = 0x0417,
IRI_VERSIONINFO = 0x0421,
IRI_XMPMETADATA = 0x0424
};
enum LayerId : quint32 {
LI_MT16 = 0x4D743136, // 'Mt16',
LI_MT32 = 0x4D743332, // 'Mt32',
LI_MTRN = 0x4D74726E // 'Mtrn'
};
struct PSDHeader {
uint signature;
ushort version;
uchar reserved[6];
ushort channel_count;
uint height;
uint width;
ushort depth;
ushort color_mode;
};
struct PSDImageResourceBlock {
QString name;
QByteArray data;
};
/*!
* \brief The PSDDuotoneOptions struct
* \note You can decode the duotone data using the "Duotone Options"
* file format found in the "Photoshop File Format" specs.
*/
struct PSDDuotoneOptions {
QByteArray data;
};
/*!
* \brief The PSDColorModeDataSection struct
* Only indexed color and duotone have color mode data.
*/
struct PSDColorModeDataSection {
PSDDuotoneOptions duotone;
QVector<QRgb> palette;
};
using PSDImageResourceSection = QHash<quint16, PSDImageResourceBlock>;
struct PSDLayerInfo {
qint64 size = -1;
qint16 layerCount = 0;
};
struct PSDGlobalLayerMaskInfo {
qint64 size = -1;
};
struct PSDAdditionalLayerInfo {
Signature signature = Signature();
LayerId id = LayerId();
qint64 size = -1;
};
struct PSDLayerAndMaskSection {
qint64 size = -1;
PSDLayerInfo layerInfo;
PSDGlobalLayerMaskInfo globalLayerMaskInfo;
QHash<LayerId, PSDAdditionalLayerInfo> additionalLayerInfo;
bool isNull() const {
return (size <= 0);
}
bool hasAlpha() const {
return layerInfo.layerCount < 0 ||
additionalLayerInfo.contains(LI_MT16) ||
additionalLayerInfo.contains(LI_MT32) ||
additionalLayerInfo.contains(LI_MTRN);
}
bool atEnd(bool isPsb) const {
qint64 currentSize = 0;
if (layerInfo.size > -1) {
currentSize += layerInfo.size + 4;
if (isPsb)
currentSize += 4;
}
if (globalLayerMaskInfo.size > -1) {
currentSize += globalLayerMaskInfo.size + 4;
}
for (auto && v : additionalLayerInfo.values()) {
currentSize += (12 + v.size);
if (v.signature == S_8B64)
currentSize += 4;
}
return (size <= currentSize);
}
};
/*!
* \brief fixedPointToDouble
* Converts a fixed point number to floating point one.
*/
static double fixedPointToDouble(qint32 fixedPoint)
{
auto i = double(fixedPoint >> 16);
auto d = double((fixedPoint & 0x0000FFFF) / 65536.0);
return (i+d);
}
static qint64 readSize(QDataStream &s, bool psb = false)
{
qint64 size = 0;
if (!psb) {
quint32 tmp;
s >> tmp;
size = tmp;
}
else {
s >> size;
}
if (s.status() != QDataStream::Ok) {
size = -1;
}
return size;
}
static bool skip_data(QDataStream &s, qint64 size)
{
// Skip mode data.
for (qint32 i32 = 0; size; size -= i32) {
i32 = std::min(size, qint64(std::numeric_limits<qint32>::max()));
i32 = s.skipRawData(i32);
if (i32 < 1)
return false;
}
return true;
}
static bool skip_section(QDataStream &s, bool psb = false)
{
auto section_length = readSize(s, psb);
if (section_length < 0)
return false;
return skip_data(s, section_length);
}
/*!
* \brief readPascalString
* Reads the Pascal string as defined in the PSD specification.
* \param s The stream.
* \param alignBytes Alignment of the string.
* \param size Number of stream bytes used.
* \return The string read.
*/
static QString readPascalString(QDataStream &s, qint32 alignBytes = 1, qint32 *size = nullptr)
{
qint32 tmp = 0;
if (size == nullptr)
size = &tmp;
quint8 stringSize;
s >> stringSize;
*size = sizeof(stringSize);
QString str;
if (stringSize > 0) {
QByteArray ba;
ba.resize(stringSize);
auto read = s.readRawData(ba.data(), ba.size());
if (read > 0) {
*size += read;
str = QString::fromLatin1(ba);
}
}
// align
if (alignBytes > 1)
if (auto pad = *size % alignBytes)
*size += s.skipRawData(alignBytes - pad);
return str;
}
/*!
* \brief readImageResourceSection
* Reads the image resource section.
* \param s The stream.
* \param ok Pointer to the operation result variable.
* \return The image resource section raw data.
*/
static PSDImageResourceSection readImageResourceSection(QDataStream &s, bool *ok = nullptr)
{
PSDImageResourceSection irs;
bool tmp = true;
if (ok == nullptr)
ok = &tmp;
*ok = true;
// Section size
qint32 sectioSize;
s >> sectioSize;
#ifdef QT_DEBUG
auto pos = qint64();
if (auto dev = s.device())
pos = dev->pos();
#endif
// Reading Image resource block
for (auto size = sectioSize; size > 0;) {
// Length Description
// -------------------------------------------------------------------
// 4 Signature: '8BIM'
// 2 Unique identifier for the resource. Image resource IDs
// contains a list of resource IDs used by Photoshop.
// Variable Name: Pascal string, padded to make the size even
// (a null name consists of two bytes of 0)
// 4 Actual size of resource data that follows
// Variable The resource data, described in the sections on the
// individual resource types. It is padded to make the size
// even.
quint32 signature;
s >> signature;
size -= sizeof(signature);
// NOTE: MeSa signature is not documented but found in some old PSD take from Photoshop 7.0 CD.
if (signature != S_8BIM && signature != S_MeSa) { // 8BIM and MeSa
qDebug() << "Invalid Image Resource Block Signature!";
*ok = false;
break;
}
// id
quint16 id;
s >> id;
size -= sizeof(id);
// getting data
PSDImageResourceBlock irb;
// name
qint32 bytes = 0;
irb.name = readPascalString(s, 2, &bytes);
size -= bytes;
// data read
quint32 dataSize;
s >> dataSize;
size -= sizeof(dataSize);
// NOTE: Qt device::read() and QDataStream::readRawData() could read less data than specified.
// The read code should be improved.
if (auto dev = s.device())
irb.data = dev->read(dataSize);
auto read = irb.data.size();
if (read > 0)
size -= read;
if (quint32(read) != dataSize) {
qDebug() << "Image Resource Block Read Error!";
*ok = false;
break;
}
if (auto pad = dataSize % 2) {
auto skipped = s.skipRawData(pad);
if (skipped > 0)
size -= skipped;
}
// insert IRB
irs.insert(id, irb);
}
#ifdef QT_DEBUG
if (auto dev = s.device()) {
if ((dev->pos() - pos) != sectioSize) {
*ok = false;
}
}
#endif
return irs;
}
PSDAdditionalLayerInfo readAdditionalLayer(QDataStream &s, bool *ok = nullptr)
{
PSDAdditionalLayerInfo li;
bool tmp = true;
if (ok == nullptr)
ok = &tmp;
s >> li.signature;
*ok = li.signature == S_8BIM || li.signature == S_8B64;
if (!*ok)
return li;
s >> li.id;
*ok = s.status() == QDataStream::Ok;
if (!*ok)
return li;
li.size = readSize(s, li.signature == S_8B64);
*ok = li.size >= 0;
if (!*ok)
return li;
*ok = skip_data(s, li.size);
return li;
}
PSDLayerAndMaskSection readLayerAndMaskSection(QDataStream &s, bool isPsb, bool *ok = nullptr)
{
PSDLayerAndMaskSection lms;
bool tmp = true;
if (ok == nullptr)
ok = &tmp;
*ok = true;
auto device = s.device();
device->startTransaction();
lms.size = readSize(s, isPsb);
// read layer info
if (s.status() == QDataStream::Ok && !lms.atEnd(isPsb)) {
lms.layerInfo.size = readSize(s, isPsb);
if (lms.layerInfo.size > 0) {
s >> lms.layerInfo.layerCount;
skip_data(s, lms.layerInfo.size - sizeof(lms.layerInfo.layerCount));
}
}
// read global layer mask info
if (s.status() == QDataStream::Ok && !lms.atEnd(isPsb)) {
lms.globalLayerMaskInfo.size = readSize(s, false); // always 32-bits
if (lms.globalLayerMaskInfo.size > 0) {
skip_data(s, lms.globalLayerMaskInfo.size);
}
}
// read additional layer info
if (s.status() == QDataStream::Ok) {
for (bool ok = true; ok && !lms.atEnd(isPsb);) {
auto al = readAdditionalLayer(s, &ok);
if (ok)
lms.additionalLayerInfo.insert(al.id, al);
}
}
device->rollbackTransaction();
*ok = skip_section(s, isPsb);
return lms;
}
/*!
* \brief readColorModeDataSection
* Read the color mode section
* \param s The stream.
* \param ok Pointer to the operation result variable.
* \return The color mode section.
*/
PSDColorModeDataSection readColorModeDataSection(QDataStream &s, bool *ok = nullptr)
{
PSDColorModeDataSection cms;
bool tmp = false;
if (ok == nullptr)
ok = &tmp;
*ok = true;
qint32 size;
s >> size;
if (size != 768) { // read the duotone data (524 bytes)
// NOTE: A RGB/Gray float image has a 112 bytes ColorModeData that could be
// the "32-bit Toning Options" of Photoshop (starts with 'hdrt').
// Official Adobe specification tells "Only indexed color and duotone
// (see the mode field in the File header section) have color mode data.".
// See test case images 32bit_grayscale.psd and 32bit-rgb.psd
cms.duotone.data = s.device()->read(size);
if (cms.duotone.data.size() != size)
*ok = false;
}
else { // read the palette (768 bytes)
auto&& palette = cms.palette;
QVector<quint8> vect(size);
for (auto&& v : vect)
s >> v;
for (qsizetype i = 0, n = vect.size()/3; i < n; ++i)
palette.append(qRgb(vect.at(i), vect.at(n+i), vect.at(n+n+i)));
}
return cms;
}
/*!
* \brief setColorSpace
* Set the color space to the image.
* \param img The image.
* \param irs The image resource section.
* \return True on success, otherwise false.
*/
static bool setColorSpace(QImage& img, const PSDImageResourceSection& irs)
{
if (!irs.contains(IRI_ICCPROFILE))
return false;
auto irb = irs.value(IRI_ICCPROFILE);
auto cs = QColorSpace::fromIccProfile(irb.data);
if (!cs.isValid())
return false;
img.setColorSpace(cs);
return true;
}
/*!
* \brief setXmpData
* Adds XMP metadata to QImage.
* \param img The image.
* \param irs The image resource section.
* \return True on success, otherwise false.
*/
static bool setXmpData(QImage& img, const PSDImageResourceSection& irs)
{
if (!irs.contains(IRI_XMPMETADATA))
return false;
auto irb = irs.value(IRI_XMPMETADATA);
auto xmp = QString::fromUtf8(irb.data);
if (xmp.isEmpty())
return false;
// NOTE: "XML:com.adobe.xmp" is the meta set by Qt reader when an
// XMP packet is found (e.g. when reading a PNG saved by Photoshop).
// I'm reusing the same key because a programs could search for it.
img.setText(QStringLiteral("XML:com.adobe.xmp"), xmp);
return true;
}
/*!
* \brief hasMergedData
* Checks if merged image data are available.
* \param irs The image resource section.
* \return True on success or if the block does not exist, otherwise false.
*/
static bool hasMergedData(const PSDImageResourceSection& irs)
{
if (!irs.contains(IRI_VERSIONINFO))
return true;
auto irb = irs.value(IRI_VERSIONINFO);
if (irb.data.size() > 4)
return irb.data.at(4) != 0;
return false;
}
/*!
* \brief setResolution
* Set the image resolution.
* \param img The image.
* \param irs The image resource section.
* \return True on success, otherwise false.
*/
static bool setResolution(QImage& img, const PSDImageResourceSection& irs)
{
if (!irs.contains(IRI_RESOLUTIONINFO))
return false;
auto irb = irs.value(IRI_RESOLUTIONINFO);
QDataStream s(irb.data);
s.setByteOrder(QDataStream::BigEndian);
qint32 i32;
s >> i32; // Horizontal resolution in pixels per inch.
if (i32 <= 0)
return false;
auto hres = fixedPointToDouble(i32);
s.skipRawData(4); // Display data (not used here)
s >> i32; // Vertial resolution in pixels per inch.
if (i32 <= 0)
return false;
auto vres = fixedPointToDouble(i32);
img.setDotsPerMeterX(hres * 1000 / 25.4);
img.setDotsPerMeterY(vres * 1000 / 25.4);
return true;
}
/*!
* \brief setTransparencyIndex
* Search for transparency index block and, if found, changes the alpha of the value at the given index.
* \param img The image.
* \param irs The image resource section.
* \return True on success, otherwise false.
*/
static bool setTransparencyIndex(QImage& img, const PSDImageResourceSection& irs)
{
if (!irs.contains(IRI_TRANSPARENCYINDEX))
return false;
auto irb = irs.value(IRI_TRANSPARENCYINDEX);
QDataStream s(irb.data);
s.setByteOrder(QDataStream::BigEndian);
quint16 idx;
s >> idx;
auto palette = img.colorTable();
if (idx < palette.size()) {
auto&& v = palette[idx];
v = QRgb(v & ~0xFF000000);
img.setColorTable(palette);
return true;
}
return false;
}
static QDataStream &operator>>(QDataStream &s, PSDHeader &header)
{
s >> header.signature;
s >> header.version;
for (int i = 0; i < 6; i++) {
s >> header.reserved[i];
}
s >> header.channel_count;
s >> header.height;
s >> header.width;
s >> header.depth;
s >> header.color_mode;
return s;
}
// Check that the header is a valid PSD (as written in the PSD specification).
static bool IsValid(const PSDHeader &header)
{
if (header.signature != 0x38425053) { // '8BPS'
//qDebug() << "PSD header: invalid signature" << header.signature;
return false;
}
if (header.version != 1 && header.version != 2) {
qDebug() << "PSD header: invalid version" << header.version;
return false;
}
if (header.depth != 8 &&
header.depth != 16 &&
header.depth != 32 &&
header.depth != 1) {
qDebug() << "PSD header: invalid depth" << header.depth;
return false;
}
if (header.color_mode != CM_RGB &&
header.color_mode != CM_GRAYSCALE &&
header.color_mode != CM_INDEXED &&
header.color_mode != CM_DUOTONE &&
header.color_mode != CM_CMYK &&
header.color_mode != CM_LABCOLOR &&
header.color_mode != CM_MULTICHANNEL &&
header.color_mode != CM_BITMAP) {
qDebug() << "PSD header: invalid color mode" << header.color_mode;
return false;
}
if (header.channel_count < 1 || header.channel_count > 56) {
qDebug() << "PSD header: invalid number of channels" << header.channel_count;
return false;
}
if (header.width > 300000 || header.height > 300000) {
qDebug() << "PSD header: invalid image size" << header.width << "x" << header.height;
return false;
}
return true;
}
// Check that the header is supported by this plugin.
static bool IsSupported(const PSDHeader &header)
{
if (header.version != 1 && header.version != 2) {
return false;
}
if (header.depth != 8 &&
header.depth != 16 &&
header.depth != 32 &&
header.depth != 1) {
return false;
}
if (header.color_mode != CM_RGB &&
header.color_mode != CM_GRAYSCALE &&
header.color_mode != CM_INDEXED &&
header.color_mode != CM_DUOTONE &&
header.color_mode != CM_CMYK &&
header.color_mode != CM_LABCOLOR &&
header.color_mode != CM_BITMAP) {
return false;
}
return true;
}
/*!
* \brief decompress
* Fast PackBits decompression.
* \param input The compressed input buffer.
* \param ilen The input buffer size.
* \param output The uncompressed target buffer.
* \param olen The target buffer size.
* \return The number of valid bytes in the target buffer.
*/
qint64 decompress(const char *input, qint64 ilen, char *output, qint64 olen)
{
qint64 j = 0;
for (qint64 ip = 0, rr = 0, available = olen; j < olen && ip < ilen; available = olen - j) {
signed char n = static_cast<signed char>(input[ip++]);
if (n == -128)
continue;
if (n >= 0) {
rr = qint64(n) + 1;
if (available < rr) {
--ip;
break;
}
if (ip + rr > ilen)
return -1;
memcpy(output + j, input + ip, size_t(rr));
ip += rr;
}
else if (ip < ilen) {
rr = qint64(1-n);
if (available < rr) {
--ip;
break;
}
memset(output + j, input[ip++], size_t(rr));
}
j += rr;
}
return j;
}
/*!
* \brief imageFormat
* \param header The PSD header.
* \return The Qt image format.
*/
static QImage::Format imageFormat(const PSDHeader &header, bool alpha)
{
if (header.channel_count == 0) {
return QImage::Format_Invalid;
}
auto format = QImage::Format_Invalid;
switch(header.color_mode) {
case CM_RGB:
if (header.depth == 16 || header.depth == 32)
format = header.channel_count < 4 || !alpha ? QImage::Format_RGBX64 : QImage::Format_RGBA64;
else
format = header.channel_count < 4 || !alpha ? QImage::Format_RGB888 : QImage::Format_RGBA8888;
break;
case CM_CMYK: // Photoshop supports CMYK 8-bits and 16-bits only
if (header.depth == 16)
format = header.channel_count < 5 || !alpha ? QImage::Format_RGBX64 : QImage::Format_RGBA64;
else if (header.depth == 8)
format = header.channel_count < 5 || !alpha ? QImage::Format_RGB888 : QImage::Format_RGBA8888;
break;
case CM_LABCOLOR: // Photoshop supports LAB 8-bits and 16-bits only
if (header.depth == 16)
format = header.channel_count < 4 || !alpha ? QImage::Format_RGBX64 : QImage::Format_RGBA64;
else if (header.depth == 8)
format = header.channel_count < 4 || !alpha ? QImage::Format_RGB888 : QImage::Format_RGBA8888;
break;
case CM_GRAYSCALE:
case CM_DUOTONE:
format = header.depth == 8 ? QImage::Format_Grayscale8 : QImage::Format_Grayscale16;
break;
case CM_INDEXED:
format = header.depth == 8 ? QImage::Format_Indexed8 : QImage::Format_Invalid;
break;
case CM_BITMAP:
format = header.depth == 1 ? QImage::Format_Mono : QImage::Format_Invalid;
break;
}
return format;
}
/*!
* \brief imageChannels
* \param format The Qt image format.
* \return The number of channels of the image format.
*/
static qint32 imageChannels(const QImage::Format& format)
{
qint32 c = 4;
switch(format) {
case QImage::Format_RGB888:
c = 3;
break;
case QImage::Format_Grayscale8:
case QImage::Format_Grayscale16:
case QImage::Format_Indexed8:
case QImage::Format_Mono:
c = 1;
break;
default:
break;
}
return c;
}
inline quint8 xchg(quint8 v) {
return v;
}
inline quint16 xchg(quint16 v) {
#if Q_BYTE_ORDER == Q_LITTLE_ENDIAN
return quint16( (v>>8) | (v<<8) );
#else
return v; // never tested
#endif
}
inline quint32 xchg(quint32 v) {
#if Q_BYTE_ORDER == Q_LITTLE_ENDIAN
return quint32( (v>>24) | ((v & 0x00FF0000)>>8) | ((v & 0x0000FF00)<<8) | (v<<24) );
#else
return v; // never tested
#endif
}
template<class T>
inline void planarToChunchy(uchar *target, const char *source, qint32 width, qint32 c, qint32 cn)
{
auto s = reinterpret_cast<const T*>(source);
auto t = reinterpret_cast<T*>(target);
for (qint32 x = 0; x < width; ++x) {
t[x*cn+c] = xchg(s[x]);
}
}
template<class T, T min = 0, T max = 1>
inline void planarToChunchyFloat(uchar *target, const char *source, qint32 width, qint32 c, qint32 cn)
{
auto s = reinterpret_cast<const T*>(source);
auto t = reinterpret_cast<quint16*>(target);
for (qint32 x = 0; x < width; ++x) {
auto tmp = xchg(s[x]);
auto ftmp = (*reinterpret_cast<float*>(&tmp) - double(min)) / (double(max) - double(min));
t[x*cn+c] = quint16(std::min(ftmp * std::numeric_limits<quint16>::max() + 0.5, double(std::numeric_limits<quint16>::max())));
}
}
inline void monoInvert(uchar *target, const char* source, qint32 bytes)
{
auto s = reinterpret_cast<const quint8*>(source);
auto t = reinterpret_cast<quint8*>(target);
for (qint32 x = 0; x < bytes; ++x) {
t[x] = ~s[x];
}
}
template<class T>
inline void cmykToRgb(uchar *target, qint32 targetChannels, const char *source, qint32 sourceChannels, qint32 width, bool alpha = false)
{
auto s = reinterpret_cast<const T*>(source);
auto t = reinterpret_cast<T*>(target);
auto max = double(std::numeric_limits<T>::max());
if (sourceChannels < 4) {
qDebug() << "cmykToRgb: image is not a valid CMYK!";
return;
}
for (qint32 w = 0; w < width; ++w) {
auto ps = s + sourceChannels * w;
auto C = 1 - *(ps + 0) / max;
auto M = 1 - *(ps + 1) / max;
auto Y = 1 - *(ps + 2) / max;
auto K = 1 - *(ps + 3) / max;
auto pt = t + targetChannels * w;
*(pt + 0) = T(std::min(max - (C * (1 - K) + K) * max + 0.5, max));
*(pt + 1) = T(std::min(max - (M * (1 - K) + K) * max + 0.5, max));
*(pt + 2) = T(std::min(max - (Y * (1 - K) + K) * max + 0.5, max));
if (targetChannels == 4) {
if (sourceChannels >= 5 && alpha)
*(pt + 3) = *(ps + 4);
else
*(pt + 3) = std::numeric_limits<T>::max();
}
}
}
inline double finv(double v)
{
return (v > 6.0 / 29.0 ? v * v * v : (v - 16.0 / 116.0) / 7.787);
}
inline double gammaCorrection(double linear)
{
#ifdef PSD_FAST_LAB_CONVERSION
return linear;
#else
// NOTE: pow() slow down the performance by a 4 factor :(
return (linear > 0.0031308 ? 1.055 * std::pow(linear, 1.0 / 2.4) - 0.055 : 12.92 * linear);
#endif
}
template<class T>
inline void labToRgb(uchar *target, qint32 targetChannels, const char *source, qint32 sourceChannels, qint32 width, bool alpha = false)
{
auto s = reinterpret_cast<const T*>(source);
auto t = reinterpret_cast<T*>(target);
auto max = double(std::numeric_limits<T>::max());
if (sourceChannels < 3) {
qDebug() << "labToRgb: image is not a valid LAB!";
return;
}
for (qint32 w = 0; w < width; ++w) {
auto ps = s + sourceChannels * w;
auto L = (*(ps + 0) / max) * 100.0;
auto A = (*(ps + 1) / max) * 255.0 - 128.0;
auto B = (*(ps + 2) / max) * 255.0 - 128.0;
// converting LAB to XYZ (D65 illuminant)
auto Y = (L + 16.0) / 116.0;
auto X = A / 500.0 + Y;
auto Z = Y - B / 200.0;
// NOTE: use the constants of the illuminant of the target RGB color space
X = finv(X) * 0.9504; // D50: * 0.9642
Y = finv(Y) * 1.0000; // D50: * 1.0000
Z = finv(Z) * 1.0888; // D50: * 0.8251
// converting XYZ to sRGB (sRGB illuminant is D65)
auto r = gammaCorrection( 3.24071 * X - 1.53726 * Y - 0.498571 * Z);
auto g = gammaCorrection(- 0.969258 * X + 1.87599 * Y + 0.0415557 * Z);
auto b = gammaCorrection( 0.0556352 * X - 0.203996 * Y + 1.05707 * Z);
auto pt = t + targetChannels * w;
*(pt + 0) = T(std::max(std::min(r * max + 0.5, max), 0.0));
*(pt + 1) = T(std::max(std::min(g * max + 0.5, max), 0.0));
*(pt + 2) = T(std::max(std::min(b * max + 0.5, max), 0.0));
if (targetChannels == 4) {
if (sourceChannels >= 4 && alpha)
*(pt + 3) = *(ps + 3);
else
*(pt + 3) = std::numeric_limits<T>::max();
}
}
}
bool readChannel(QByteArray& target, QDataStream &stream, quint32 compressedSize, quint16 compression)
{
if (compression) {
QByteArray tmp;
tmp.resize(compressedSize);
if (stream.readRawData(tmp.data(), tmp.size()) != tmp.size()) {
return false;
}
if (decompress(tmp.data(), tmp.size(), target.data(), target.size()) < 0) {
return false;
}
}
else if (stream.readRawData(target.data(), target.size()) != target.size()) {
return false;
}
return stream.status() == QDataStream::Ok;
}
// Load the PSD image.
static bool LoadPSD(QDataStream &stream, const PSDHeader &header, QImage &img)
{
// Checking for PSB
auto isPsb = header.version == 2;
bool ok = false;
// Color Mode Data section
auto cmds = readColorModeDataSection(stream, &ok);
if (!ok) {
qDebug() << "Error while skipping Color Mode Data section";
return false;
}
// Image Resources Section
auto irs = readImageResourceSection(stream, &ok);
if (!ok) {
qDebug() << "Error while reading Image Resources Section";
return false;
}
// Checking for merged image (Photoshop compatibility data)
if (!hasMergedData(irs)) {
qDebug() << "No merged data found";
return false;
}
// Layer and Mask section
auto lms = readLayerAndMaskSection(stream, isPsb, &ok);
if (!ok) {
qDebug() << "Error while skipping Layer and Mask section";
return false;
}
// Find out if the data is compressed.
// Known values:
// 0: no compression
// 1: RLE compressed
quint16 compression;
stream >> compression;
if (compression > 1) {
qDebug() << "Unknown compression type";
return false;
}
// Try to identify the nature of spots: note that this is just one of many ways to identify the presence
// of alpha channels: should work in most cases where colorspaces != RGB/Gray
auto alpha = header.color_mode == CM_RGB;
if (!lms.isNull())
alpha = lms.hasAlpha();
const QImage::Format format = imageFormat(header, alpha);
if (format == QImage::Format_Invalid) {
qWarning() << "Unsupported image format. color_mode:" << header.color_mode << "depth:" << header.depth << "channel_count:" << header.channel_count;
return false;
}
img = QImage(header.width, header.height, format);
if (img.isNull()) {
qWarning() << "Failed to allocate image, invalid dimensions?" << QSize(header.width, header.height);
return false;
}
img.fill(qRgb(0, 0, 0));
if (!cmds.palette.isEmpty()) {
img.setColorTable(cmds.palette);
setTransparencyIndex(img, irs);
}
auto imgChannels = imageChannels(img.format());
auto channel_num = std::min(qint32(header.channel_count), imgChannels);
auto raw_count = qsizetype(header.width * header.depth + 7) / 8;
if (header.height > kMaxQVectorSize / header.channel_count / sizeof(quint32)) {
qWarning() << "LoadPSD() header height/channel_count too big" << header.height << header.channel_count;
return false;
}
QVector<quint32> strides(header.height * header.channel_count, raw_count);
// Read the compressed stride sizes
if (compression) {
for (auto&& v : strides) {
if (isPsb) {
stream >> v;
continue;
}
quint16 tmp;
stream >> tmp;
v = tmp;
}
}
// calculate the absolute file positions of each stride (required when a colorspace conversion should be done)
auto device = stream.device();
QVector<quint64> stridePositions(strides.size());
if (!stridePositions.isEmpty()) {
stridePositions[0] = device->pos();
}
for (qsizetype i = 1, n = stridePositions.size(); i < n; ++i) {
stridePositions[i] = stridePositions[i-1] + strides.at(i-1);
}
// Read the image
QByteArray rawStride;
rawStride.resize(raw_count);
if (header.color_mode == CM_CMYK || header.color_mode == CM_LABCOLOR || header.color_mode == CM_MULTICHANNEL) {
// In order to make a colorspace transformation, we need all channels of a scanline
QByteArray psdScanline;
psdScanline.resize(qsizetype(header.width * std::min(header.depth, quint16(16)) * header.channel_count + 7) / 8);
for (qint32 y = 0, h = header.height; y < h; ++y) {
for (qint32 c = 0; c < header.channel_count; ++c) {
auto strideNumber = c * qsizetype(h) + y;
if (!device->seek(stridePositions.at(strideNumber))) {
qDebug() << "Error while seeking the stream of channel" << c << "line" << y;
return false;
}
auto&& strideSize = strides.at(strideNumber);
if (!readChannel(rawStride, stream, strideSize, compression)) {
qDebug() << "Error while reading the stream of channel" << c << "line" << y;
return false;
}
auto scanLine = reinterpret_cast<unsigned char*>(psdScanline.data());
if (header.depth == 8) {
planarToChunchy<quint8>(scanLine, rawStride.data(), header.width, c, header.channel_count);
}
else if (header.depth == 16) {
planarToChunchy<quint16>(scanLine, rawStride.data(), header.width, c, header.channel_count);
}
else if (header.depth == 32) { // Not currently used
planarToChunchyFloat<quint32>(scanLine, rawStride.data(), header.width, c, header.channel_count);
}
}
// Conversion to RGB
if (header.color_mode == CM_CMYK) {
if (header.depth == 8)
cmykToRgb<quint8>(img.scanLine(y), imgChannels, psdScanline.data(), header.channel_count, header.width, alpha);
else
cmykToRgb<quint16>(img.scanLine(y), imgChannels, psdScanline.data(), header.channel_count, header.width, alpha);
}
if (header.color_mode == CM_LABCOLOR) {
if (header.depth == 8)
labToRgb<quint8>(img.scanLine(y), imgChannels, psdScanline.data(), header.channel_count, header.width, alpha);
else
labToRgb<quint16>(img.scanLine(y), imgChannels, psdScanline.data(), header.channel_count, header.width, alpha);
}
}
}
else {
// Linear read (no position jumps): optimized code usable only for the colorspaces supported by QImage
for (qint32 c = 0; c < channel_num; ++c) {
for (qint32 y = 0, h = header.height; y < h; ++y) {
auto&& strideSize = strides.at(c * qsizetype(h) + y);
if (!readChannel(rawStride, stream, strideSize, compression)) {
qDebug() << "Error while reading the stream of channel" << c << "line" << y;
return false;
}
auto scanLine = img.scanLine(y);
if (header.depth == 1) { // Bitmap
monoInvert(scanLine, rawStride.data(), std::min(rawStride.size(), img.bytesPerLine()));
}
else if (header.depth == 8) { // 8-bits images: Indexed, Grayscale, RGB/RGBA
planarToChunchy<quint8>(scanLine, rawStride.data(), header.width, c, imgChannels);
}
else if (header.depth == 16) { // 16-bits integer images: Grayscale, RGB/RGBA
planarToChunchy<quint16>(scanLine, rawStride.data(), header.width, c, imgChannels);
}
else if (header.depth == 32) { // 32-bits float images: Grayscale, RGB/RGBA (coverted to equivalent integer 16-bits)
planarToChunchyFloat<quint32>(scanLine, rawStride.data(), header.width, c, imgChannels);
}
}
}
}
// LAB conversion generates a sRGB image
if (header.color_mode == CM_LABCOLOR) {
#ifdef PSD_FAST_LAB_CONVERSION
img.setColorSpace(QColorSpace(QColorSpace::SRgbLinear));
#else
img.setColorSpace(QColorSpace(QColorSpace::SRgb));
#endif
}
// Resolution info
if (!setResolution(img, irs)) {
// qDebug() << "No resolution info found!";
}
// ICC profile
if (!setColorSpace(img, irs)) {
// qDebug() << "No colorspace info set!";
}
// XMP data
if (!setXmpData(img, irs)) {
// qDebug() << "No XMP data found!";
}
// Duotone images: color data contains the duotone specification (not documented).
// Other applications that read Photoshop files can treat a duotone image as a gray image,
// and just preserve the contents of the duotone information when reading and writing the file.
if (!cmds.duotone.data.isEmpty()) {
img.setText(QStringLiteral("PSDDuotoneOptions"), QString::fromUtf8(cmds.duotone.data.toHex()));
}
return true;
}
} // Private
PSDHandler::PSDHandler()
{
}
bool PSDHandler::canRead() const
{
if (canRead(device())) {
setFormat("psd");
return true;
}
return false;
}
bool PSDHandler::read(QImage *image)
{
QDataStream s(device());
s.setByteOrder(QDataStream::BigEndian);
PSDHeader header;
s >> header;
// Check image file format.
if (s.atEnd() || !IsValid(header)) {
// qDebug() << "This PSD file is not valid.";
return false;
}
// Check if it's a supported format.
if (!IsSupported(header)) {
// qDebug() << "This PSD file is not supported.";
return false;
}
QImage img;
if (!LoadPSD(s, header, img)) {
// qDebug() << "Error loading PSD file.";
return false;
}
*image = img;
return true;
}
bool PSDHandler::supportsOption(ImageOption option) const
{
if (option == QImageIOHandler::Size)
return true;
return false;
}
QVariant PSDHandler::option(ImageOption option) const
{
QVariant v;
if (option == QImageIOHandler::Size) {
if (auto d = device()) {
// transactions works on both random and sequential devices
d->startTransaction();
auto ba = d->read(sizeof(PSDHeader));
d->rollbackTransaction();
QDataStream s(ba);
s.setByteOrder(QDataStream::BigEndian);
PSDHeader header;
s >> header;
if (s.status() == QDataStream::Ok && IsValid(header))
v = QVariant::fromValue(QSize(header.width, header.height));
}
}
return v;
}
bool PSDHandler::canRead(QIODevice *device)
{
if (!device) {
qWarning("PSDHandler::canRead() called with no device");
return false;
}
qint64 oldPos = device->pos();
char head[4];
qint64 readBytes = device->read(head, sizeof(head));
if (readBytes < 0) {
qWarning() << "Read failed" << device->errorString();
return false;
}
if (readBytes != sizeof(head)) {
if (device->isSequential()) {
while (readBytes > 0) {
device->ungetChar(head[readBytes-- - 1]);
}
} else {
device->seek(oldPos);
}
return false;
}
if (device->isSequential()) {
while (readBytes > 0) {
device->ungetChar(head[readBytes-- - 1]);
}
} else {
device->seek(oldPos);
}
return qstrncmp(head, "8BPS", 4) == 0;
}
QImageIOPlugin::Capabilities PSDPlugin::capabilities(QIODevice *device, const QByteArray &format) const
{
if (format == "psd" || format == "psb" || format == "pdd" || format == "psdt") {
return Capabilities(CanRead);
}
if (!format.isEmpty()) {
return {};
}
if (!device->isOpen()) {
return {};
}
Capabilities cap;
if (device->isReadable() && PSDHandler::canRead(device)) {
cap |= CanRead;
}
return cap;
}
QImageIOHandler *PSDPlugin::create(QIODevice *device, const QByteArray &format) const
{
QImageIOHandler *handler = new PSDHandler;
handler->setDevice(device);
handler->setFormat(format);
return handler;
}