kimageformats/src/imageformats/heif.cpp
Daniel Novomeský 3b1e8f7054 minor tweaks in HEIF and AVIF plugins
It is mostly only about casting between types.
2022-11-19 11:38:49 +00:00

853 lines
29 KiB
C++

/*
High Efficiency Image File Format (HEIF) support for QImage.
SPDX-FileCopyrightText: 2020 Sirius Bakke <sirius@bakke.co>
SPDX-FileCopyrightText: 2021 Daniel Novomesky <dnovomesky@gmail.com>
SPDX-License-Identifier: LGPL-2.0-or-later
*/
#include "heif_p.h"
#include "libheif/heif_cxx.h"
#include "util_p.h"
#include <QColorSpace>
#include <QDebug>
#include <QPointF>
#include <QSysInfo>
#include <limits>
#include <string.h>
namespace // Private.
{
struct HeifQIODeviceWriter : public heif::Context::Writer {
HeifQIODeviceWriter(QIODevice *device)
: m_ioDevice(device)
{
}
heif_error write(const void *data, size_t size) override
{
heif_error error;
error.code = heif_error_Ok;
error.subcode = heif_suberror_Unspecified;
error.message = errorOkMessage;
qint64 bytesWritten = m_ioDevice->write(static_cast<const char *>(data), size);
if (bytesWritten < static_cast<qint64>(size)) {
error.code = heif_error_Encoding_error;
error.message = QIODeviceWriteErrorMessage;
error.subcode = heif_suberror_Cannot_write_output_data;
}
return error;
}
static constexpr const char *errorOkMessage = "Success";
static constexpr const char *QIODeviceWriteErrorMessage = "Bytes written to QIODevice are smaller than input data size";
private:
QIODevice *m_ioDevice;
};
} // namespace
size_t HEIFHandler::m_initialized_count = 0;
bool HEIFHandler::m_plugins_queried = false;
bool HEIFHandler::m_heif_decoder_available = false;
bool HEIFHandler::m_heif_encoder_available = false;
HEIFHandler::HEIFHandler()
: m_parseState(ParseHeicNotParsed)
, m_quality(100)
{
}
bool HEIFHandler::canRead() const
{
if (m_parseState == ParseHeicNotParsed && !canRead(device())) {
return false;
}
if (m_parseState != ParseHeicError) {
setFormat("heif");
return true;
}
return false;
}
bool HEIFHandler::read(QImage *outImage)
{
if (!ensureParsed()) {
return false;
}
*outImage = m_current_image;
return true;
}
bool HEIFHandler::write(const QImage &image)
{
if (image.format() == QImage::Format_Invalid || image.isNull()) {
qWarning("No image data to save");
return false;
}
#if LIBHEIF_HAVE_VERSION(1, 13, 0)
startHeifLib();
#endif
bool success = write_helper(image);
#if LIBHEIF_HAVE_VERSION(1, 13, 0)
finishHeifLib();
#endif
return success;
}
bool HEIFHandler::write_helper(const QImage &image)
{
int save_depth; // 8 or 10bit per channel
QImage::Format tmpformat; // format for temporary image
const bool save_alpha = image.hasAlphaChannel();
switch (image.format()) {
case QImage::Format_BGR30:
case QImage::Format_A2BGR30_Premultiplied:
case QImage::Format_RGB30:
case QImage::Format_A2RGB30_Premultiplied:
case QImage::Format_Grayscale16:
case QImage::Format_RGBX64:
case QImage::Format_RGBA64:
case QImage::Format_RGBA64_Premultiplied:
save_depth = 10;
break;
default:
if (image.depth() > 32) {
save_depth = 10;
} else {
save_depth = 8;
}
break;
}
heif_chroma chroma;
if (save_depth > 8) {
if (save_alpha) {
tmpformat = QImage::Format_RGBA64;
chroma = (QSysInfo::ByteOrder == QSysInfo::LittleEndian) ? heif_chroma_interleaved_RRGGBBAA_LE : heif_chroma_interleaved_RRGGBBAA_BE;
} else {
tmpformat = QImage::Format_RGBX64;
chroma = (QSysInfo::ByteOrder == QSysInfo::LittleEndian) ? heif_chroma_interleaved_RRGGBB_LE : heif_chroma_interleaved_RRGGBB_BE;
}
} else {
if (save_alpha) {
tmpformat = QImage::Format_RGBA8888;
chroma = heif_chroma_interleaved_RGBA;
} else {
tmpformat = QImage::Format_RGB888;
chroma = heif_chroma_interleaved_RGB;
}
}
const QImage tmpimage = image.convertToFormat(tmpformat);
try {
heif::Context ctx;
heif::Image heifImage;
heifImage.create(tmpimage.width(), tmpimage.height(), heif_colorspace_RGB, chroma);
QByteArray iccprofile = tmpimage.colorSpace().iccProfile();
if (iccprofile.size() > 0) {
std::vector<uint8_t> rawProfile(iccprofile.begin(), iccprofile.end());
heifImage.set_raw_color_profile(heif_color_profile_type_prof, rawProfile);
}
heifImage.add_plane(heif_channel_interleaved, image.width(), image.height(), save_depth);
int stride = 0;
uint8_t *const dst = heifImage.get_plane(heif_channel_interleaved, &stride);
size_t rowbytes;
switch (save_depth) {
case 10:
if (save_alpha) {
for (int y = 0; y < tmpimage.height(); y++) {
const uint16_t *src_word = reinterpret_cast<const uint16_t *>(tmpimage.constScanLine(y));
uint16_t *dest_word = reinterpret_cast<uint16_t *>(dst + (y * stride));
for (int x = 0; x < tmpimage.width(); x++) {
int tmp_pixelval;
// R
tmp_pixelval = (int)(((float)(*src_word) / 65535.0f) * 1023.0f + 0.5f);
*dest_word = qBound(0, tmp_pixelval, 1023);
src_word++;
dest_word++;
// G
tmp_pixelval = (int)(((float)(*src_word) / 65535.0f) * 1023.0f + 0.5f);
*dest_word = qBound(0, tmp_pixelval, 1023);
src_word++;
dest_word++;
// B
tmp_pixelval = (int)(((float)(*src_word) / 65535.0f) * 1023.0f + 0.5f);
*dest_word = qBound(0, tmp_pixelval, 1023);
src_word++;
dest_word++;
// A
tmp_pixelval = (int)(((float)(*src_word) / 65535.0f) * 1023.0f + 0.5f);
*dest_word = qBound(0, tmp_pixelval, 1023);
src_word++;
dest_word++;
}
}
} else { // no alpha channel
for (int y = 0; y < tmpimage.height(); y++) {
const uint16_t *src_word = reinterpret_cast<const uint16_t *>(tmpimage.constScanLine(y));
uint16_t *dest_word = reinterpret_cast<uint16_t *>(dst + (y * stride));
for (int x = 0; x < tmpimage.width(); x++) {
int tmp_pixelval;
// R
tmp_pixelval = (int)(((float)(*src_word) / 65535.0f) * 1023.0f + 0.5f);
*dest_word = qBound(0, tmp_pixelval, 1023);
src_word++;
dest_word++;
// G
tmp_pixelval = (int)(((float)(*src_word) / 65535.0f) * 1023.0f + 0.5f);
*dest_word = qBound(0, tmp_pixelval, 1023);
src_word++;
dest_word++;
// B
tmp_pixelval = (int)(((float)(*src_word) / 65535.0f) * 1023.0f + 0.5f);
*dest_word = qBound(0, tmp_pixelval, 1023);
src_word++;
dest_word++;
// X
src_word++;
}
}
}
break;
case 8:
rowbytes = save_alpha ? (tmpimage.width() * 4) : (tmpimage.width() * 3);
for (int y = 0; y < tmpimage.height(); y++) {
memcpy(dst + (y * stride), tmpimage.constScanLine(y), rowbytes);
}
break;
default:
qWarning() << "Unsupported depth:" << save_depth;
return false;
break;
}
heif::Encoder encoder(heif_compression_HEVC);
encoder.set_lossy_quality(m_quality);
if (m_quality > 90) {
if (m_quality == 100) {
encoder.set_lossless(true);
}
encoder.set_string_parameter("chroma", "444");
}
heif::Context::EncodingOptions encodingOptions;
encodingOptions.save_alpha_channel = save_alpha;
if ((tmpimage.width() % 2 == 1) || (tmpimage.height() % 2 == 1)) {
qWarning() << "Image has odd dimension!\nUse even-numbered dimension(s) for better compatibility with other HEIF implementations.";
if (save_alpha) {
// This helps to save alpha channel when image has odd dimension
encodingOptions.macOS_compatibility_workaround = 0;
}
}
ctx.encode_image(heifImage, encoder, encodingOptions);
HeifQIODeviceWriter writer(device());
ctx.write(writer);
} catch (const heif::Error &err) {
qWarning() << "libheif error:" << err.get_message().c_str();
return false;
}
return true;
}
bool HEIFHandler::canRead(QIODevice *device)
{
if (!device) {
qWarning("HEIFHandler::canRead() called with no device");
return false;
}
const QByteArray header = device->peek(28);
return HEIFHandler::isSupportedBMFFType(header);
}
bool HEIFHandler::isSupportedBMFFType(const QByteArray &header)
{
if (header.size() < 28) {
return false;
}
const char *buffer = header.constData();
if (qstrncmp(buffer + 4, "ftyp", 4) == 0) {
if (qstrncmp(buffer + 8, "heic", 4) == 0) {
return true;
}
if (qstrncmp(buffer + 8, "heis", 4) == 0) {
return true;
}
if (qstrncmp(buffer + 8, "heix", 4) == 0) {
return true;
}
/* we want to avoid loading AVIF files via this plugin */
if (qstrncmp(buffer + 8, "mif1", 4) == 0) {
for (int offset = 16; offset <= 24; offset += 4) {
if (qstrncmp(buffer + offset, "avif", 4) == 0) {
return false;
}
}
return true;
}
if (qstrncmp(buffer + 8, "mif2", 4) == 0) {
return true;
}
if (qstrncmp(buffer + 8, "msf1", 4) == 0) {
return true;
}
}
return false;
}
QVariant HEIFHandler::option(ImageOption option) const
{
if (option == Quality) {
return m_quality;
}
if (!supportsOption(option) || !ensureParsed()) {
return QVariant();
}
switch (option) {
case Size:
return m_current_image.size();
break;
default:
return QVariant();
break;
}
}
void HEIFHandler::setOption(ImageOption option, const QVariant &value)
{
switch (option) {
case Quality:
m_quality = value.toInt();
if (m_quality > 100) {
m_quality = 100;
} else if (m_quality < 0) {
m_quality = 100;
}
break;
default:
QImageIOHandler::setOption(option, value);
break;
}
}
bool HEIFHandler::supportsOption(ImageOption option) const
{
return option == Quality || option == Size;
}
bool HEIFHandler::ensureParsed() const
{
if (m_parseState == ParseHeicSuccess) {
return true;
}
if (m_parseState == ParseHeicError) {
return false;
}
HEIFHandler *that = const_cast<HEIFHandler *>(this);
#if LIBHEIF_HAVE_VERSION(1, 13, 0)
startHeifLib();
#endif
bool success = that->ensureDecoder();
#if LIBHEIF_HAVE_VERSION(1, 13, 0)
finishHeifLib();
#endif
return success;
}
bool HEIFHandler::ensureDecoder()
{
if (m_parseState != ParseHeicNotParsed) {
if (m_parseState == ParseHeicSuccess) {
return true;
}
return false;
}
const QByteArray buffer = device()->readAll();
if (!HEIFHandler::isSupportedBMFFType(buffer)) {
m_parseState = ParseHeicError;
return false;
}
try {
heif::Context ctx;
ctx.read_from_memory_without_copy(static_cast<const void *>(buffer.constData()), buffer.size());
heif::ImageHandle handle = ctx.get_primary_image_handle();
const bool hasAlphaChannel = handle.has_alpha_channel();
const int bit_depth = handle.get_luma_bits_per_pixel();
heif_chroma chroma;
QImage::Format target_image_format;
if (bit_depth == 10 || bit_depth == 12) {
if (hasAlphaChannel) {
chroma = (QSysInfo::ByteOrder == QSysInfo::LittleEndian) ? heif_chroma_interleaved_RRGGBBAA_LE : heif_chroma_interleaved_RRGGBBAA_BE;
target_image_format = QImage::Format_RGBA64;
} else {
chroma = (QSysInfo::ByteOrder == QSysInfo::LittleEndian) ? heif_chroma_interleaved_RRGGBB_LE : heif_chroma_interleaved_RRGGBB_BE;
target_image_format = QImage::Format_RGBX64;
}
} else if (bit_depth == 8) {
if (hasAlphaChannel) {
chroma = heif_chroma_interleaved_RGBA;
target_image_format = QImage::Format_ARGB32;
} else {
chroma = heif_chroma_interleaved_RGB;
target_image_format = QImage::Format_RGB32;
}
} else {
m_parseState = ParseHeicError;
if (bit_depth > 0) {
qWarning() << "Unsupported bit depth:" << bit_depth;
} else {
qWarning() << "Undefined bit depth.";
}
return false;
}
heif::Image img = handle.decode_image(heif_colorspace_RGB, chroma);
const int imageWidth = img.get_width(heif_channel_interleaved);
const int imageHeight = img.get_height(heif_channel_interleaved);
QSize imageSize(imageWidth, imageHeight);
if (!imageSize.isValid()) {
m_parseState = ParseHeicError;
qWarning() << "HEIC image size invalid:" << imageSize;
return false;
}
int stride = 0;
const uint8_t *const src = img.get_plane(heif_channel_interleaved, &stride);
if (!src || stride <= 0) {
m_parseState = ParseHeicError;
qWarning() << "HEIC data pixels information not valid!";
return false;
}
m_current_image = imageAlloc(imageSize, target_image_format);
if (m_current_image.isNull()) {
m_parseState = ParseHeicError;
qWarning() << "Unable to allocate memory!";
return false;
}
switch (bit_depth) {
case 12:
if (hasAlphaChannel) {
for (int y = 0; y < imageHeight; y++) {
const uint16_t *src_word = reinterpret_cast<const uint16_t *>(src + (y * stride));
uint16_t *dest_data = reinterpret_cast<uint16_t *>(m_current_image.scanLine(y));
for (int x = 0; x < imageWidth; x++) {
int tmpvalue;
// R
tmpvalue = (int)(((float)(0x0fff & (*src_word)) / 4095.0f) * 65535.0f + 0.5f);
tmpvalue = qBound(0, tmpvalue, 65535);
*dest_data = (uint16_t)tmpvalue;
src_word++;
dest_data++;
// G
tmpvalue = (int)(((float)(0x0fff & (*src_word)) / 4095.0f) * 65535.0f + 0.5f);
tmpvalue = qBound(0, tmpvalue, 65535);
*dest_data = (uint16_t)tmpvalue;
src_word++;
dest_data++;
// B
tmpvalue = (int)(((float)(0x0fff & (*src_word)) / 4095.0f) * 65535.0f + 0.5f);
tmpvalue = qBound(0, tmpvalue, 65535);
*dest_data = (uint16_t)tmpvalue;
src_word++;
dest_data++;
// A
tmpvalue = (int)(((float)(0x0fff & (*src_word)) / 4095.0f) * 65535.0f + 0.5f);
tmpvalue = qBound(0, tmpvalue, 65535);
*dest_data = (uint16_t)tmpvalue;
src_word++;
dest_data++;
}
}
} else { // no alpha channel
for (int y = 0; y < imageHeight; y++) {
const uint16_t *src_word = reinterpret_cast<const uint16_t *>(src + (y * stride));
uint16_t *dest_data = reinterpret_cast<uint16_t *>(m_current_image.scanLine(y));
for (int x = 0; x < imageWidth; x++) {
int tmpvalue;
// R
tmpvalue = (int)(((float)(0x0fff & (*src_word)) / 4095.0f) * 65535.0f + 0.5f);
tmpvalue = qBound(0, tmpvalue, 65535);
*dest_data = (uint16_t)tmpvalue;
src_word++;
dest_data++;
// G
tmpvalue = (int)(((float)(0x0fff & (*src_word)) / 4095.0f) * 65535.0f + 0.5f);
tmpvalue = qBound(0, tmpvalue, 65535);
*dest_data = (uint16_t)tmpvalue;
src_word++;
dest_data++;
// B
tmpvalue = (int)(((float)(0x0fff & (*src_word)) / 4095.0f) * 65535.0f + 0.5f);
tmpvalue = qBound(0, tmpvalue, 65535);
*dest_data = (uint16_t)tmpvalue;
src_word++;
dest_data++;
// X = 0xffff
*dest_data = 0xffff;
dest_data++;
}
}
}
break;
case 10:
if (hasAlphaChannel) {
for (int y = 0; y < imageHeight; y++) {
const uint16_t *src_word = reinterpret_cast<const uint16_t *>(src + (y * stride));
uint16_t *dest_data = reinterpret_cast<uint16_t *>(m_current_image.scanLine(y));
for (int x = 0; x < imageWidth; x++) {
int tmpvalue;
// R
tmpvalue = (int)(((float)(0x03ff & (*src_word)) / 1023.0f) * 65535.0f + 0.5f);
tmpvalue = qBound(0, tmpvalue, 65535);
*dest_data = (uint16_t)tmpvalue;
src_word++;
dest_data++;
// G
tmpvalue = (int)(((float)(0x03ff & (*src_word)) / 1023.0f) * 65535.0f + 0.5f);
tmpvalue = qBound(0, tmpvalue, 65535);
*dest_data = (uint16_t)tmpvalue;
src_word++;
dest_data++;
// B
tmpvalue = (int)(((float)(0x03ff & (*src_word)) / 1023.0f) * 65535.0f + 0.5f);
tmpvalue = qBound(0, tmpvalue, 65535);
*dest_data = (uint16_t)tmpvalue;
src_word++;
dest_data++;
// A
tmpvalue = (int)(((float)(0x03ff & (*src_word)) / 1023.0f) * 65535.0f + 0.5f);
tmpvalue = qBound(0, tmpvalue, 65535);
*dest_data = (uint16_t)tmpvalue;
src_word++;
dest_data++;
}
}
} else { // no alpha channel
for (int y = 0; y < imageHeight; y++) {
const uint16_t *src_word = reinterpret_cast<const uint16_t *>(src + (y * stride));
uint16_t *dest_data = reinterpret_cast<uint16_t *>(m_current_image.scanLine(y));
for (int x = 0; x < imageWidth; x++) {
int tmpvalue;
// R
tmpvalue = (int)(((float)(0x03ff & (*src_word)) / 1023.0f) * 65535.0f + 0.5f);
tmpvalue = qBound(0, tmpvalue, 65535);
*dest_data = (uint16_t)tmpvalue;
src_word++;
dest_data++;
// G
tmpvalue = (int)(((float)(0x03ff & (*src_word)) / 1023.0f) * 65535.0f + 0.5f);
tmpvalue = qBound(0, tmpvalue, 65535);
*dest_data = (uint16_t)tmpvalue;
src_word++;
dest_data++;
// B
tmpvalue = (int)(((float)(0x03ff & (*src_word)) / 1023.0f) * 65535.0f + 0.5f);
tmpvalue = qBound(0, tmpvalue, 65535);
*dest_data = (uint16_t)tmpvalue;
src_word++;
dest_data++;
// X = 0xffff
*dest_data = 0xffff;
dest_data++;
}
}
}
break;
case 8:
if (hasAlphaChannel) {
for (int y = 0; y < imageHeight; y++) {
const uint8_t *src_byte = src + (y * stride);
uint32_t *dest_pixel = reinterpret_cast<uint32_t *>(m_current_image.scanLine(y));
for (int x = 0; x < imageWidth; x++) {
int red = *src_byte++;
int green = *src_byte++;
int blue = *src_byte++;
int alpha = *src_byte++;
*dest_pixel = qRgba(red, green, blue, alpha);
dest_pixel++;
}
}
} else { // no alpha channel
for (int y = 0; y < imageHeight; y++) {
const uint8_t *src_byte = src + (y * stride);
uint32_t *dest_pixel = reinterpret_cast<uint32_t *>(m_current_image.scanLine(y));
for (int x = 0; x < imageWidth; x++) {
int red = *src_byte++;
int green = *src_byte++;
int blue = *src_byte++;
*dest_pixel = qRgb(red, green, blue);
dest_pixel++;
}
}
}
break;
default:
m_parseState = ParseHeicError;
qWarning() << "Unsupported bit depth:" << bit_depth;
return false;
break;
}
heif_color_profile_type profileType = heif_image_handle_get_color_profile_type(handle.get_raw_image_handle());
struct heif_error err;
if (profileType == heif_color_profile_type_prof || profileType == heif_color_profile_type_rICC) {
size_t rawProfileSize = heif_image_handle_get_raw_color_profile_size(handle.get_raw_image_handle());
if (rawProfileSize > 0 && rawProfileSize < std::numeric_limits<int>::max()) {
QByteArray ba(rawProfileSize, 0);
err = heif_image_handle_get_raw_color_profile(handle.get_raw_image_handle(), ba.data());
if (err.code) {
qWarning() << "icc profile loading failed";
} else {
m_current_image.setColorSpace(QColorSpace::fromIccProfile(ba));
if (!m_current_image.colorSpace().isValid()) {
qWarning() << "HEIC image has Qt-unsupported or invalid ICC profile!";
}
}
} else {
qWarning() << "icc profile is empty or above limits";
}
} else if (profileType == heif_color_profile_type_nclx) {
struct heif_color_profile_nclx *nclx = nullptr;
err = heif_image_handle_get_nclx_color_profile(handle.get_raw_image_handle(), &nclx);
if (err.code || !nclx) {
qWarning() << "nclx profile loading failed";
} else {
const QPointF redPoint(nclx->color_primary_red_x, nclx->color_primary_red_y);
const QPointF greenPoint(nclx->color_primary_green_x, nclx->color_primary_green_y);
const QPointF bluePoint(nclx->color_primary_blue_x, nclx->color_primary_blue_y);
const QPointF whitePoint(nclx->color_primary_white_x, nclx->color_primary_white_y);
QColorSpace::TransferFunction q_trc = QColorSpace::TransferFunction::Custom;
float q_trc_gamma = 0.0f;
switch (nclx->transfer_characteristics) {
case 4:
q_trc = QColorSpace::TransferFunction::Gamma;
q_trc_gamma = 2.2f;
break;
case 5:
q_trc = QColorSpace::TransferFunction::Gamma;
q_trc_gamma = 2.8f;
break;
case 8:
q_trc = QColorSpace::TransferFunction::Linear;
break;
case 2:
case 13:
q_trc = QColorSpace::TransferFunction::SRgb;
break;
default:
qWarning("CICP color_primaries: %d, transfer_characteristics: %d\nThe colorspace is unsupported by this plug-in yet.",
nclx->color_primaries,
nclx->transfer_characteristics);
q_trc = QColorSpace::TransferFunction::SRgb;
break;
}
if (q_trc != QColorSpace::TransferFunction::Custom) { // we create new colorspace using Qt
switch (nclx->color_primaries) {
case 1:
case 2:
m_current_image.setColorSpace(QColorSpace(QColorSpace::Primaries::SRgb, q_trc, q_trc_gamma));
break;
case 12:
m_current_image.setColorSpace(QColorSpace(QColorSpace::Primaries::DciP3D65, q_trc, q_trc_gamma));
break;
default:
m_current_image.setColorSpace(QColorSpace(whitePoint, redPoint, greenPoint, bluePoint, q_trc, q_trc_gamma));
break;
}
}
heif_nclx_color_profile_free(nclx);
if (!m_current_image.colorSpace().isValid()) {
qWarning() << "HEIC plugin created invalid QColorSpace from NCLX!";
}
}
} else {
m_current_image.setColorSpace(QColorSpace(QColorSpace::SRgb));
}
} catch (const heif::Error &err) {
m_parseState = ParseHeicError;
qWarning() << "libheif error:" << err.get_message().c_str();
return false;
}
m_parseState = ParseHeicSuccess;
return true;
}
bool HEIFHandler::isHeifDecoderAvailable()
{
QMutexLocker locker(&getHEIFHandlerMutex());
if (!m_plugins_queried) {
#if LIBHEIF_HAVE_VERSION(1, 13, 0)
if (m_initialized_count == 0) {
heif_init(nullptr);
}
#endif
m_heif_encoder_available = heif_have_encoder_for_format(heif_compression_HEVC);
m_heif_decoder_available = heif_have_decoder_for_format(heif_compression_HEVC);
m_plugins_queried = true;
#if LIBHEIF_HAVE_VERSION(1, 13, 0)
if (m_initialized_count == 0) {
heif_deinit();
}
#endif
}
return m_heif_decoder_available;
}
bool HEIFHandler::isHeifEncoderAvailable()
{
QMutexLocker locker(&getHEIFHandlerMutex());
if (!m_plugins_queried) {
#if LIBHEIF_HAVE_VERSION(1, 13, 0)
if (m_initialized_count == 0) {
heif_init(nullptr);
}
#endif
m_heif_decoder_available = heif_have_decoder_for_format(heif_compression_HEVC);
m_heif_encoder_available = heif_have_encoder_for_format(heif_compression_HEVC);
m_plugins_queried = true;
#if LIBHEIF_HAVE_VERSION(1, 13, 0)
if (m_initialized_count == 0) {
heif_deinit();
}
#endif
}
return m_heif_encoder_available;
}
void HEIFHandler::startHeifLib()
{
#if LIBHEIF_HAVE_VERSION(1, 13, 0)
QMutexLocker locker(&getHEIFHandlerMutex());
if (m_initialized_count == 0) {
heif_init(nullptr);
}
m_initialized_count++;
#endif
}
void HEIFHandler::finishHeifLib()
{
#if LIBHEIF_HAVE_VERSION(1, 13, 0)
QMutexLocker locker(&getHEIFHandlerMutex());
if (m_initialized_count == 0) {
return;
}
m_initialized_count--;
if (m_initialized_count == 0) {
heif_deinit();
}
#endif
}
QMutex &HEIFHandler::getHEIFHandlerMutex()
{
static QMutex heif_handler_mutex;
return heif_handler_mutex;
}
QImageIOPlugin::Capabilities HEIFPlugin::capabilities(QIODevice *device, const QByteArray &format) const
{
if (format == "heif" || format == "heic") {
Capabilities format_cap;
if (HEIFHandler::isHeifDecoderAvailable()) {
format_cap |= CanRead;
}
if (HEIFHandler::isHeifEncoderAvailable()) {
format_cap |= CanWrite;
}
return format_cap;
}
if (!format.isEmpty()) {
return {};
}
if (!device->isOpen()) {
return {};
}
Capabilities cap;
if (device->isReadable() && HEIFHandler::canRead(device) && HEIFHandler::isHeifDecoderAvailable()) {
cap |= CanRead;
}
if (device->isWritable() && HEIFHandler::isHeifEncoderAvailable()) {
cap |= CanWrite;
}
return cap;
}
QImageIOHandler *HEIFPlugin::create(QIODevice *device, const QByteArray &format) const
{
QImageIOHandler *handler = new HEIFHandler;
handler->setDevice(device);
handler->setFormat(format);
return handler;
}