kimageformats/src/imageformats/rgb.cpp
Mirco Miranda 2405a09e36 RGB: added options support
- Added support for `Size` and `Format` options and slightly improved format detection from canRead().
- Removed conversion to ARGB32 on load (improved performace with RGBA images).
- Added result checks on writing.

With this MR, all plugins have minimal support for options.
2024-08-25 21:00:08 +00:00

929 lines
21 KiB
C++

/*
kimgio module for SGI images
SPDX-FileCopyrightText: 2004 Melchior FRANZ <mfranz@kde.org>
SPDX-License-Identifier: LGPL-2.0-or-later
*/
/* this code supports:
* reading:
* everything, except images with 1 dimension or images with
* mapmode != NORMAL (e.g. dithered); Images with 16 bit
* precision or more than 4 layers are stripped down.
* writing:
* Run Length Encoded (RLE) or Verbatim (uncompressed)
* (whichever is smaller)
*
* Please report if you come across rgb/rgba/sgi/bw files that aren't
* recognized. Also report applications that can't deal with images
* saved by this filter.
*/
#include "rgb_p.h"
#include "util_p.h"
#include <cstring>
#include <QList>
#include <QMap>
#include <QDebug>
#include <QImage>
class RLEData : public QList<uchar>
{
public:
RLEData()
{
}
RLEData(const uchar *d, uint l, uint o)
: _offset(o)
{
for (uint i = 0; i < l; i++) {
append(d[i]);
}
}
bool operator<(const RLEData &) const;
void write(QDataStream &s);
uint offset() const
{
return _offset;
}
private:
uint _offset;
};
class RLEMap : public QMap<RLEData, uint>
{
public:
RLEMap()
: _counter(0)
, _offset(0)
{
}
uint insert(const uchar *d, uint l);
QList<const RLEData *> vector();
void setBaseOffset(uint o)
{
_offset = o;
}
private:
uint _counter;
uint _offset;
};
class SGIImagePrivate
{
public:
SGIImagePrivate();
~SGIImagePrivate();
bool readImage(QImage &);
bool writeImage(const QImage &);
bool isValid() const;
bool isSupported() const;
bool peekHeader(QIODevice *device);
QSize size() const;
QImage::Format format() const;
void setDevice(QIODevice *device);
private:
enum {
NORMAL,
DITHERED,
SCREEN,
COLORMAP,
}; // colormap
QIODevice *_dev;
QDataStream _stream;
quint16 _magic = 0;
quint8 _rle = 0;
quint8 _bpc = 0;
quint16 _dim = 0;
quint16 _xsize = 0;
quint16 _ysize = 0;
quint16 _zsize = 0;
quint32 _pixmin = 0;
quint32 _pixmax = 0;
char _imagename[80];
quint32 _colormap = 0;
quint8 _unused[404];
quint32 _unused32 = 0;
quint32 *_starttab;
quint32 *_lengthtab;
QByteArray _data;
QByteArray::Iterator _pos;
RLEMap _rlemap;
QList<const RLEData *> _rlevector;
uint _numrows;
bool readData(QImage &);
bool getRow(uchar *dest);
bool readHeader();
static bool readHeader(QDataStream &ds, SGIImagePrivate *sgi);
bool writeHeader();
bool writeRle();
bool writeVerbatim(const QImage &);
bool scanData(const QImage &);
uint compact(uchar *, uchar *);
uchar intensity(uchar);
};
SGIImagePrivate::SGIImagePrivate()
: _dev(nullptr)
, _starttab(nullptr)
, _lengthtab(nullptr)
{
std::memset(_imagename, 0, sizeof(_imagename));
std::memset(_unused, 0, sizeof(_unused));
}
SGIImagePrivate::~SGIImagePrivate()
{
delete[] _starttab;
delete[] _lengthtab;
}
///////////////////////////////////////////////////////////////////////////////
void SGIImagePrivate::setDevice(QIODevice *device)
{
_dev = device;
_stream.setDevice(_dev);
}
bool SGIImagePrivate::getRow(uchar *dest)
{
int n;
int i;
if (!_rle) {
for (i = 0; i < _xsize; i++) {
if (_pos >= _data.end()) {
return false;
}
dest[i] = uchar(*_pos);
_pos += _bpc;
}
return true;
}
for (i = 0; i < _xsize;) {
if (_bpc == 2) {
_pos++;
}
if (_pos >= _data.end()) {
return false;
}
n = *_pos & 0x7f;
if (!n) {
break;
}
if (*_pos++ & 0x80) {
for (; i < _xsize && _pos < _data.end() && n--; i++) {
*dest++ = *_pos;
_pos += _bpc;
}
} else {
for (; i < _xsize && n--; i++) {
*dest++ = *_pos;
}
_pos += _bpc;
}
}
return i == _xsize;
}
bool SGIImagePrivate::readData(QImage &img)
{
QRgb *c;
quint32 *start = _starttab;
QByteArray lguard(_xsize, 0);
uchar *line = (uchar *)lguard.data();
unsigned x;
unsigned y;
if (!_rle) {
_pos = _data.begin();
}
for (y = 0; y < _ysize; y++) {
if (_rle) {
_pos = _data.begin() + *start++;
}
if (!getRow(line)) {
return false;
}
c = (QRgb *)img.scanLine(_ysize - y - 1);
for (x = 0; x < _xsize; x++, c++) {
*c = qRgb(line[x], line[x], line[x]);
}
}
if (_zsize == 1) {
return true;
}
if (_zsize != 2) {
for (y = 0; y < _ysize; y++) {
if (_rle) {
_pos = _data.begin() + *start++;
}
if (!getRow(line)) {
return false;
}
c = (QRgb *)img.scanLine(_ysize - y - 1);
for (x = 0; x < _xsize; x++, c++) {
*c = qRgb(qRed(*c), line[x], line[x]);
}
}
for (y = 0; y < _ysize; y++) {
if (_rle) {
_pos = _data.begin() + *start++;
}
if (!getRow(line)) {
return false;
}
c = (QRgb *)img.scanLine(_ysize - y - 1);
for (x = 0; x < _xsize; x++, c++) {
*c = qRgb(qRed(*c), qGreen(*c), line[x]);
}
}
if (_zsize == 3) {
return true;
}
}
for (y = 0; y < _ysize; y++) {
if (_rle) {
_pos = _data.begin() + *start++;
}
if (!getRow(line)) {
return false;
}
c = (QRgb *)img.scanLine(_ysize - y - 1);
for (x = 0; x < _xsize; x++, c++) {
*c = qRgba(qRed(*c), qGreen(*c), qBlue(*c), line[x]);
}
}
return true;
}
bool SGIImagePrivate::readImage(QImage &img)
{
if (!readHeader() || !isSupported()) {
return false;
}
if (_stream.atEnd()) {
return false;
}
img = imageAlloc(size(), format());
if (img.isNull()) {
qWarning() << "Failed to allocate image, invalid dimensions?" << QSize(_xsize, _ysize);
return false;
}
if (_zsize > 4) {
// qDebug() << "using first 4 of " << _zsize << " channels";
// Only let this continue if it won't cause a int overflow later
// this is most likely a broken file anyway
if (_ysize > std::numeric_limits<int>::max() / _zsize) {
return false;
}
}
_numrows = _ysize * _zsize;
if (_rle) {
uint l;
_starttab = new quint32[_numrows];
for (l = 0; !_stream.atEnd() && l < _numrows; l++) {
_stream >> _starttab[l];
_starttab[l] -= 512 + _numrows * 2 * sizeof(quint32);
}
for (; l < _numrows; l++) {
_starttab[l] = 0;
}
_lengthtab = new quint32[_numrows];
for (l = 0; !_stream.atEnd() && l < _numrows; l++) {
_stream >> _lengthtab[l];
}
}
if (_stream.status() != QDataStream::Ok) {
return false;
}
_data = _dev->readAll();
// sanity check
if (_rle) {
for (uint o = 0; o < _numrows; o++) {
// don't change to greater-or-equal!
if (_starttab[o] + _lengthtab[o] > (uint)_data.size()) {
// qDebug() << "image corrupt (sanity check failed)";
return false;
}
}
}
if (!readData(img)) {
// qDebug() << "image corrupt (incomplete scanline)";
return false;
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
void RLEData::write(QDataStream &s)
{
for (int i = 0; i < size(); i++) {
s << at(i);
}
}
bool RLEData::operator<(const RLEData &b) const
{
uchar ac;
uchar bc;
for (int i = 0; i < qMin(size(), b.size()); i++) {
ac = at(i);
bc = b[i];
if (ac != bc) {
return ac < bc;
}
}
return size() < b.size();
}
uint RLEMap::insert(const uchar *d, uint l)
{
RLEData data = RLEData(d, l, _offset);
Iterator it = find(data);
if (it != end()) {
return it.value();
}
_offset += l;
return QMap<RLEData, uint>::insert(data, _counter++).value();
}
QList<const RLEData *> RLEMap::vector()
{
QList<const RLEData *> v(size());
for (Iterator it = begin(); it != end(); ++it) {
v.replace(it.value(), &it.key());
}
return v;
}
uchar SGIImagePrivate::intensity(uchar c)
{
if (c < _pixmin) {
_pixmin = c;
}
if (c > _pixmax) {
_pixmax = c;
}
return c;
}
uint SGIImagePrivate::compact(uchar *d, uchar *s)
{
uchar *dest = d;
uchar *src = s;
uchar patt;
uchar *t;
uchar *end = s + _xsize;
int i;
int n;
while (src < end) {
for (n = 0, t = src; t + 2 < end && !(*t == t[1] && *t == t[2]); t++) {
n++;
}
while (n) {
i = n > 126 ? 126 : n;
n -= i;
*dest++ = 0x80 | i;
while (i--) {
*dest++ = *src++;
}
}
if (src == end) {
break;
}
patt = *src++;
for (n = 1; src < end && *src == patt; src++) {
n++;
}
while (n) {
i = n > 126 ? 126 : n;
n -= i;
*dest++ = i;
*dest++ = patt;
}
}
*dest++ = 0;
return dest - d;
}
bool SGIImagePrivate::scanData(const QImage &img)
{
quint32 *start = _starttab;
QByteArray lineguard(_xsize * 2, 0);
QByteArray bufguard(_xsize, 0);
uchar *line = (uchar *)lineguard.data();
uchar *buf = (uchar *)bufguard.data();
const QRgb *c;
unsigned x;
unsigned y;
uint len;
for (y = 0; y < _ysize; y++) {
const int yPos = _ysize - y - 1; // scanline doesn't do any sanity checking
if (yPos >= img.height()) {
qWarning() << "Failed to get scanline for" << yPos;
return false;
}
c = reinterpret_cast<const QRgb *>(img.scanLine(yPos));
for (x = 0; x < _xsize; x++) {
buf[x] = intensity(qRed(*c++));
}
len = compact(line, buf);
*start++ = _rlemap.insert(line, len);
}
if (_zsize == 1) {
return true;
}
if (_zsize != 2) {
for (y = 0; y < _ysize; y++) {
const int yPos = _ysize - y - 1;
if (yPos >= img.height()) {
qWarning() << "Failed to get scanline for" << yPos;
return false;
}
c = reinterpret_cast<const QRgb *>(img.scanLine(yPos));
for (x = 0; x < _xsize; x++) {
buf[x] = intensity(qGreen(*c++));
}
len = compact(line, buf);
*start++ = _rlemap.insert(line, len);
}
for (y = 0; y < _ysize; y++) {
const int yPos = _ysize - y - 1;
if (yPos >= img.height()) {
qWarning() << "Failed to get scanline for" << yPos;
return false;
}
c = reinterpret_cast<const QRgb *>(img.scanLine(yPos));
for (x = 0; x < _xsize; x++) {
buf[x] = intensity(qBlue(*c++));
}
len = compact(line, buf);
*start++ = _rlemap.insert(line, len);
}
if (_zsize == 3) {
return true;
}
}
for (y = 0; y < _ysize; y++) {
const int yPos = _ysize - y - 1;
if (yPos >= img.height()) {
qWarning() << "Failed to get scanline for" << yPos;
return false;
}
c = reinterpret_cast<const QRgb *>(img.scanLine(yPos));
for (x = 0; x < _xsize; x++) {
buf[x] = intensity(qAlpha(*c++));
}
len = compact(line, buf);
*start++ = _rlemap.insert(line, len);
}
return true;
}
bool SGIImagePrivate::isValid() const
{
// File signature/magic number
if (_magic != 0x01da) {
return false;
}
// Compression, 0 = Uncompressed, 1 = RLE compressed
if (_rle > 1) {
return false;
}
// Bytes per pixel, 1 = 8 bit, 2 = 16 bit
if (_bpc != 1 && _bpc != 2) {
return false;
}
// Image dimension, 3 for RGBA image
if (_dim < 1 || _dim > 3) {
return false;
}
// Number channels in the image file, 4 for RGBA image
if (_zsize < 1) {
return false;
}
return true;
}
bool SGIImagePrivate::isSupported() const
{
if (!isValid()) {
return false;
}
if (_colormap != NORMAL) {
return false; // only NORMAL supported
}
if (_dim == 1) {
return false;
}
return true;
}
bool SGIImagePrivate::peekHeader(QIODevice *device)
{
qint64 pos = 0;
if (!device->isSequential()) {
pos = device->pos();
}
auto ok = false;
QByteArray header;
{ // datastream is destroyed before working on device
header = device->read(512);
QDataStream ds(header);
ok = SGIImagePrivate::readHeader(ds, this) && isValid();
}
if (!device->isSequential()) {
return device->seek(pos) && ok;
}
// sequential device undo
auto head = header.data();
auto readBytes = header.size();
while (readBytes > 0) {
device->ungetChar(head[readBytes-- - 1]);
}
return ok;
}
QSize SGIImagePrivate::size() const
{
return QSize(_xsize, _ysize);
}
QImage::Format SGIImagePrivate::format() const
{
if (_zsize == 2 || _zsize == 4) {
return QImage::Format_ARGB32;
}
return QImage::Format_RGB32;
}
bool SGIImagePrivate::readHeader()
{
return readHeader(_stream, this);
}
bool SGIImagePrivate::readHeader(QDataStream &ds, SGIImagePrivate *sgi)
{
// magic
ds >> sgi->_magic;
// verbatim/rle
ds >> sgi->_rle;
// bytes per channel
ds >> sgi->_bpc;
// number of dimensions
ds >> sgi->_dim;
ds >> sgi->_xsize >> sgi->_ysize >> sgi->_zsize >> sgi->_pixmin >> sgi->_pixmax >> sgi->_unused32;
// name
ds.readRawData(sgi->_imagename, 80);
sgi->_imagename[79] = '\0';
ds >> sgi->_colormap;
for (size_t i = 0; i < sizeof(_unused); i++) {
ds >> sgi->_unused[i];
}
return ds.status() == QDataStream::Ok;
}
bool SGIImagePrivate::writeHeader()
{
_stream << _magic;
_stream << _rle << _bpc << _dim;
_stream << _xsize << _ysize << _zsize;
_stream << _pixmin << _pixmax;
_stream << _unused32;
for (int i = 0; i < 80; i++) {
_imagename[i] = '\0';
}
_stream.writeRawData(_imagename, 80);
_stream << _colormap;
for (size_t i = 0; i < sizeof(_unused); i++) {
_stream << _unused[i];
}
return _stream.status() == QDataStream::Ok;
}
bool SGIImagePrivate::writeRle()
{
_rle = 1;
// qDebug() << "writing RLE data";
if (!writeHeader()) {
return false;
}
uint i;
// write start table
for (i = 0; i < _numrows; i++) {
_stream << quint32(_rlevector[_starttab[i]]->offset());
}
// write length table
for (i = 0; i < _numrows; i++) {
_stream << quint32(_rlevector[_starttab[i]]->size());
}
// write data
for (i = 0; (int)i < _rlevector.size(); i++) {
const_cast<RLEData *>(_rlevector[i])->write(_stream);
}
return _stream.status() == QDataStream::Ok;
}
bool SGIImagePrivate::writeVerbatim(const QImage &img)
{
_rle = 0;
if (!writeHeader()) {
return false;
}
const QRgb *c;
unsigned x;
unsigned y;
for (y = 0; y < _ysize; y++) {
c = reinterpret_cast<const QRgb *>(img.scanLine(_ysize - y - 1));
for (x = 0; x < _xsize; x++) {
_stream << quint8(qRed(*c++));
}
}
if (_zsize == 1) {
return _stream.status() == QDataStream::Ok;
}
if (_zsize != 2) {
for (y = 0; y < _ysize; y++) {
c = reinterpret_cast<const QRgb *>(img.scanLine(_ysize - y - 1));
for (x = 0; x < _xsize; x++) {
_stream << quint8(qGreen(*c++));
}
}
for (y = 0; y < _ysize; y++) {
c = reinterpret_cast<const QRgb *>(img.scanLine(_ysize - y - 1));
for (x = 0; x < _xsize; x++) {
_stream << quint8(qBlue(*c++));
}
}
if (_zsize == 3) {
return _stream.status() == QDataStream::Ok;
}
}
for (y = 0; y < _ysize; y++) {
c = reinterpret_cast<const QRgb *>(img.scanLine(_ysize - y - 1));
for (x = 0; x < _xsize; x++) {
_stream << quint8(qAlpha(*c++));
}
}
return _stream.status() == QDataStream::Ok;
}
bool SGIImagePrivate::writeImage(const QImage &image)
{
// qDebug() << "writing "; // TODO add filename
QImage img = image;
if (img.allGray()) {
_dim = 2, _zsize = 1;
} else {
_dim = 3, _zsize = 3;
}
auto hasAlpha = img.hasAlphaChannel();
if (hasAlpha) {
_dim = 3, _zsize++;
}
if (hasAlpha && img.format() != QImage::Format_ARGB32) {
img = img.convertToFormat(QImage::Format_ARGB32);
} else if (!hasAlpha && img.format() != QImage::Format_RGB32) {
img = img.convertToFormat(QImage::Format_RGB32);
}
if (img.isNull()) {
// qDebug() << "can't convert image to depth 32";
return false;
}
const int w = img.width();
const int h = img.height();
if (w > 65535 || h > 65535) {
return false;
}
_magic = 0x01da;
_bpc = 1;
_xsize = w;
_ysize = h;
_pixmin = ~0u;
_pixmax = 0;
_colormap = NORMAL;
_numrows = _ysize * _zsize;
_starttab = new quint32[_numrows];
_rlemap.setBaseOffset(512 + _numrows * 2 * sizeof(quint32));
if (!scanData(img)) {
// qDebug() << "this can't happen";
return false;
}
_rlevector = _rlemap.vector();
long verbatim_size = _numrows * _xsize;
long rle_size = _numrows * 2 * sizeof(quint32);
for (int i = 0; i < _rlevector.size(); i++) {
rle_size += _rlevector[i]->size();
}
if (verbatim_size <= rle_size) {
return writeVerbatim(img);
}
return writeRle();
}
///////////////////////////////////////////////////////////////////////////////
RGBHandler::RGBHandler()
: QImageIOHandler()
, d(new SGIImagePrivate)
{
}
bool RGBHandler::canRead() const
{
if (canRead(device())) {
setFormat("rgb");
return true;
}
return false;
}
bool RGBHandler::read(QImage *outImage)
{
d->setDevice(device());
return d->readImage(*outImage);
}
bool RGBHandler::write(const QImage &image)
{
d->setDevice(device());
return d->writeImage(image);
}
bool RGBHandler::supportsOption(ImageOption option) const
{
if (option == QImageIOHandler::Size) {
return true;
}
if (option == QImageIOHandler::ImageFormat) {
return true;
}
return false;
}
QVariant RGBHandler::option(ImageOption option) const
{
QVariant v;
if (option == QImageIOHandler::Size) {
auto &&sgi = d;
if (sgi->isSupported()) {
v = QVariant::fromValue(sgi->size());
} else if (auto dev = device()) {
if (d->peekHeader(dev) && sgi->isSupported()) {
v = QVariant::fromValue(sgi->size());
}
}
}
if (option == QImageIOHandler::ImageFormat) {
auto &&sgi = d;
if (sgi->isSupported()) {
v = QVariant::fromValue(sgi->format());
} else if (auto dev = device()) {
if (d->peekHeader(dev) && sgi->isSupported()) {
v = QVariant::fromValue(sgi->format());
}
}
}
return v;
}
bool RGBHandler::canRead(QIODevice *device)
{
if (!device) {
qWarning("RGBHandler::canRead() called with no device");
return false;
}
SGIImagePrivate sgi;
return sgi.peekHeader(device) && sgi.isSupported();
}
///////////////////////////////////////////////////////////////////////////////
QImageIOPlugin::Capabilities RGBPlugin::capabilities(QIODevice *device, const QByteArray &format) const
{
if (format == "rgb" || format == "rgba" || format == "bw" || format == "sgi") {
return Capabilities(CanRead | CanWrite);
}
if (!format.isEmpty()) {
return {};
}
if (!device->isOpen()) {
return {};
}
Capabilities cap;
if (device->isReadable() && RGBHandler::canRead(device)) {
cap |= CanRead;
}
if (device->isWritable()) {
cap |= CanWrite;
}
return cap;
}
QImageIOHandler *RGBPlugin::create(QIODevice *device, const QByteArray &format) const
{
QImageIOHandler *handler = new RGBHandler;
handler->setDevice(device);
handler->setFormat(format);
return handler;
}
#include "moc_rgb_p.cpp"