kimageformats/src/imageformats/exr.cpp
David Faure 02b5e97197 Code reformatted using kde-dev-scripts/astyle-kdelibs.
Use git blame -w 47df948 to show authorship as it was before this commit.
2013-12-18 09:54:11 +01:00

248 lines
6.5 KiB
C++

/**
* KImageIO Routines to read (and perhaps in the future, write) images
* in the high dynamic range EXR format.
* Copyright (c) 2003, Brad Hards <bradh@frogmouth.net>
*
* This library is distributed under the conditions of the GNU LGPL.
*/
#include "exr.h"
#include <ImfRgbaFile.h>
#include <ImfStandardAttributes.h>
#include <ImathBox.h>
#include <ImfInputFile.h>
#include <ImfBoxAttribute.h>
#include <ImfChannelListAttribute.h>
#include <ImfCompressionAttribute.h>
#include <ImfFloatAttribute.h>
#include <ImfIntAttribute.h>
#include <ImfLineOrderAttribute.h>
#include <ImfStringAttribute.h>
#include <ImfVecAttribute.h>
#include <ImfArray.h>
#include <ImfConvert.h>
#include <ImfVersion.h>
#include <IexThrowErrnoExc.h>
#include <iostream>
#include <QImage>
#include <QDataStream>
// #include <QDebug>
#include <QImageIOPlugin>
class K_IStream: public Imf::IStream
{
public:
K_IStream(QIODevice *dev, const QByteArray &fileName):
IStream(fileName.data()), m_dev(dev)
{
}
virtual bool read(char c[], int n);
virtual Imf::Int64 tellg();
virtual void seekg(Imf::Int64 pos);
virtual void clear();
private:
QIODevice *m_dev;
};
bool K_IStream::read(char c[], int n)
{
qint64 result = m_dev->read(c, n);
if (result > 0) {
return true;
} else if (result == 0) {
throw Iex::InputExc("Unexpected end of file");
} else { // negative value {
Iex::throwErrnoExc("Error in read", result);
}
return false;
}
Imf::Int64 K_IStream::tellg()
{
return m_dev->pos();
}
void K_IStream::seekg(Imf::Int64 pos)
{
m_dev->seek(pos);
}
void K_IStream::clear()
{
// TODO
}
/* this does a conversion from the ILM Half (equal to Nvidia Half)
* format into the normal 32 bit pixel format. Process is from the
* ILM code.
*/
QRgb RgbaToQrgba(struct Imf::Rgba imagePixel)
{
float r, g, b, a;
// 1) Compensate for fogging by subtracting defog
// from the raw pixel values.
// Response: We work with defog of 0.0, so this is a no-op
// 2) Multiply the defogged pixel values by
// 2^(exposure + 2.47393).
// Response: We work with exposure of 0.0.
// (2^2.47393) is 5.55555
r = imagePixel.r * 5.55555;
g = imagePixel.g * 5.55555;
b = imagePixel.b * 5.55555;
a = imagePixel.a * 5.55555;
// 3) Values, which are now 1.0, are called "middle gray".
// If defog and exposure are both set to 0.0, then
// middle gray corresponds to a raw pixel value of 0.18.
// In step 6, middle gray values will be mapped to an
// intensity 3.5 f-stops below the display's maximum
// intensity.
// Response: no apparent content.
// 4) Apply a knee function. The knee function has two
// parameters, kneeLow and kneeHigh. Pixel values
// below 2^kneeLow are not changed by the knee
// function. Pixel values above kneeLow are lowered
// according to a logarithmic curve, such that the
// value 2^kneeHigh is mapped to 2^3.5 (in step 6,
// this value will be mapped to the display's
// maximum intensity).
// Response: kneeLow = 0.0 (2^0.0 => 1); kneeHigh = 5.0 (2^5 =>32)
if (r > 1.0) {
r = 1.0 + Imath::Math<float>::log((r - 1.0) * 0.184874 + 1) / 0.184874;
}
if (g > 1.0) {
g = 1.0 + Imath::Math<float>::log((g - 1.0) * 0.184874 + 1) / 0.184874;
}
if (b > 1.0) {
b = 1.0 + Imath::Math<float>::log((b - 1.0) * 0.184874 + 1) / 0.184874;
}
if (a > 1.0) {
a = 1.0 + Imath::Math<float>::log((a - 1.0) * 0.184874 + 1) / 0.184874;
}
//
// 5) Gamma-correct the pixel values, assuming that the
// screen's gamma is 0.4545 (or 1/2.2).
r = Imath::Math<float>::pow(r, 0.4545);
g = Imath::Math<float>::pow(g, 0.4545);
b = Imath::Math<float>::pow(b, 0.4545);
a = Imath::Math<float>::pow(a, 0.4545);
// 6) Scale the values such that pixels middle gray
// pixels are mapped to 84.66 (or 3.5 f-stops below
// the display's maximum intensity).
//
// 7) Clamp the values to [0, 255].
return qRgba((unsigned char)(Imath::clamp(r * 84.66f, 0.f, 255.f)),
(unsigned char)(Imath::clamp(g * 84.66f, 0.f, 255.f)),
(unsigned char)(Imath::clamp(b * 84.66f, 0.f, 255.f)),
(unsigned char)(Imath::clamp(a * 84.66f, 0.f, 255.f)));
}
EXRHandler::EXRHandler()
{
}
bool EXRHandler::canRead() const
{
if (canRead(device())) {
setFormat("exr");
return true;
}
return false;
}
bool EXRHandler::read(QImage *outImage)
{
try {
int width, height;
K_IStream istr(device(), QByteArray());
Imf::RgbaInputFile file(istr);
Imath::Box2i dw = file.dataWindow();
width = dw.max.x - dw.min.x + 1;
height = dw.max.y - dw.min.y + 1;
Imf::Array2D<Imf::Rgba> pixels;
pixels.resizeErase(height, width);
file.setFrameBuffer(&pixels[0][0] - dw.min.x - dw.min.y * width, 1, width);
file.readPixels(dw.min.y, dw.max.y);
QImage image(width, height, QImage::Format_RGB32);
if (image.isNull()) {
return false;
}
// somehow copy pixels into image
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
// copy pixels(x,y) into image(x,y)
image.setPixel(x, y, RgbaToQrgba(pixels[y][x]));
}
}
*outImage = image;
return true;
} catch (const std::exception &exc) {
// qDebug() << exc.what();
return false;
}
}
bool EXRHandler::write(const QImage &image)
{
// TODO: stub
Q_UNUSED(image);
return false;
}
bool EXRHandler::canRead(QIODevice *device)
{
if (!device) {
qWarning("EXRHandler::canRead() called with no device");
return false;
}
const QByteArray head = device->peek(4);
return Imf::isImfMagic(head.data());
}
QImageIOPlugin::Capabilities EXRPlugin::capabilities(QIODevice *device, const QByteArray &format) const
{
if (format == "exr") {
return Capabilities(CanRead);
}
if (!format.isEmpty()) {
return 0;
}
if (!device->isOpen()) {
return 0;
}
Capabilities cap;
if (device->isReadable() && EXRHandler::canRead(device)) {
cap |= CanRead;
}
return cap;
}
QImageIOHandler *EXRPlugin::create(QIODevice *device, const QByteArray &format) const
{
QImageIOHandler *handler = new EXRHandler;
handler->setDevice(device);
handler->setFormat(format);
return handler;
}