/* This file is part of the KDE project Copyright (C) 2002-2005 Nadeem Hasan This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #include "pcx_p.h" #include #include #include #include #pragma pack(push,1) class RGB { public: quint8 r; quint8 g; quint8 b; static RGB from(const QRgb color) { RGB c; c.r = qRed(color); c.g = qGreen(color); c.b = qBlue(color); return c; } }; class Palette { public: void setColor(int i, const QRgb color) { RGB &c = rgb[ i ]; c.r = qRed(color); c.g = qGreen(color); c.b = qBlue(color); } QRgb color(int i) const { return qRgb(rgb[ i ].r, rgb[ i ].g, rgb[ i ].b); } class RGB rgb[ 16 ]; }; class PCXHEADER { public: PCXHEADER(); inline int width() const { return (XMax - XMin) + 1; } inline int height() const { return (YMax - YMin) + 1; } inline bool isCompressed() const { return (Encoding == 1); } quint8 Manufacturer; // Constant Flag, 10 = ZSoft .pcx quint8 Version; // Version information· // 0 = Version 2.5 of PC Paintbrush· // 2 = Version 2.8 w/palette information· // 3 = Version 2.8 w/o palette information· // 4 = PC Paintbrush for Windows(Plus for // Windows uses Ver 5)· // 5 = Version 3.0 and > of PC Paintbrush // and PC Paintbrush +, includes // Publisher's Paintbrush . Includes // 24-bit .PCX files· quint8 Encoding; // 1 = .PCX run length encoding quint8 Bpp; // Number of bits to represent a pixel // (per Plane) - 1, 2, 4, or 8· quint16 XMin; quint16 YMin; quint16 XMax; quint16 YMax; quint16 HDpi; quint16 YDpi; Palette ColorMap; quint8 Reserved; // Should be set to 0. quint8 NPlanes; // Number of color planes quint16 BytesPerLine; // Number of bytes to allocate for a scanline // plane. MUST be an EVEN number. Do NOT // calculate from Xmax-Xmin.· quint16 PaletteInfo; // How to interpret palette- 1 = Color/BW, // 2 = Grayscale ( ignored in PB IV/ IV + )· quint16 HScreenSize; // Horizontal screen size in pixels. New field // found only in PB IV/IV Plus quint16 VScreenSize; // Vertical screen size in pixels. New field // found only in PB IV/IV Plus }; #pragma pack(pop) static QDataStream &operator>>(QDataStream &s, RGB &rgb) { quint8 r, g, b; s >> r >> g >> b; rgb.r = r; rgb.g = g; rgb.b = b; return s; } static QDataStream &operator>>(QDataStream &s, Palette &pal) { for (int i = 0; i < 16; ++i) { s >> pal.rgb[ i ]; } return s; } static QDataStream &operator>>(QDataStream &s, PCXHEADER &ph) { quint8 m, ver, enc, bpp; s >> m >> ver >> enc >> bpp; ph.Manufacturer = m; ph.Version = ver; ph.Encoding = enc; ph.Bpp = bpp; quint16 xmin, ymin, xmax, ymax; s >> xmin >> ymin >> xmax >> ymax; ph.XMin = xmin; ph.YMin = ymin; ph.XMax = xmax; ph.YMax = ymax; quint16 hdpi, ydpi; s >> hdpi >> ydpi; ph.HDpi = hdpi; ph.YDpi = ydpi; Palette colorMap; quint8 res, np; s >> colorMap >> res >> np; ph.ColorMap = colorMap; ph.Reserved = res; ph.NPlanes = np; quint16 bytesperline; s >> bytesperline; ph.BytesPerLine = bytesperline; quint16 paletteinfo; s >> paletteinfo; ph.PaletteInfo = paletteinfo; quint16 hscreensize, vscreensize; s >> hscreensize; ph.HScreenSize = hscreensize; s >> vscreensize; ph.VScreenSize = vscreensize; // Skip the rest of the header quint8 byte; while (s.device()->pos() < 128) { s >> byte; } return s; } static QDataStream &operator<<(QDataStream &s, const RGB rgb) { s << rgb.r << rgb.g << rgb.b; return s; } static QDataStream &operator<<(QDataStream &s, const Palette &pal) { for (int i = 0; i < 16; ++i) { s << pal.rgb[ i ]; } return s; } static QDataStream &operator<<(QDataStream &s, const PCXHEADER &ph) { s << ph.Manufacturer; s << ph.Version; s << ph.Encoding; s << ph.Bpp; s << ph.XMin << ph.YMin << ph.XMax << ph.YMax; s << ph.HDpi << ph.YDpi; s << ph.ColorMap; s << ph.Reserved; s << ph.NPlanes; s << ph.BytesPerLine; s << ph.PaletteInfo; s << ph.HScreenSize; s << ph.VScreenSize; quint8 byte = 0; for (int i = 0; i < 54; ++i) { s << byte; } return s; } PCXHEADER::PCXHEADER() { // Initialize all data to zero QByteArray dummy(128, 0); dummy.fill(0); QDataStream s(&dummy, QIODevice::ReadOnly); s >> *this; } static void readLine(QDataStream &s, QByteArray &buf, const PCXHEADER &header) { quint32 i = 0; quint32 size = buf.size(); quint8 byte, count; if (header.isCompressed()) { // Uncompress the image data while (i < size) { count = 1; s >> byte; if (byte > 0xc0) { count = byte - 0xc0; s >> byte; } while (count-- && i < size) { buf[ i++ ] = byte; } } } else { // Image is not compressed (possible?) while (i < size) { s >> byte; buf[ i++ ] = byte; } } } static void readImage1(QImage &img, QDataStream &s, const PCXHEADER &header) { QByteArray buf(header.BytesPerLine, 0); img = QImage(header.width(), header.height(), QImage::Format_Mono); img.setColorCount(2); if (img.isNull()) { qWarning() << "Failed to allocate image, invalid dimensions?" << QSize(header.width(), header.height()); return; } for (int y = 0; y < header.height(); ++y) { if (s.atEnd()) { img = QImage(); return; } readLine(s, buf, header); uchar *p = img.scanLine(y); unsigned int bpl = qMin((quint16)((header.width() + 7) / 8), header.BytesPerLine); for (unsigned int x = 0; x < bpl; ++x) { p[ x ] = buf[x]; } } // Set the color palette img.setColor(0, qRgb(0, 0, 0)); img.setColor(1, qRgb(255, 255, 255)); } static void readImage4(QImage &img, QDataStream &s, const PCXHEADER &header) { QByteArray buf(header.BytesPerLine * 4, 0); QByteArray pixbuf(header.width(), 0); img = QImage(header.width(), header.height(), QImage::Format_Indexed8); img.setColorCount(16); if (img.isNull()) { qWarning() << "Failed to allocate image, invalid dimensions?" << QSize(header.width(), header.height()); return; } for (int y = 0; y < header.height(); ++y) { if (s.atEnd()) { img = QImage(); return; } pixbuf.fill(0); readLine(s, buf, header); for (int i = 0; i < 4; i++) { quint32 offset = i * header.BytesPerLine; for (int x = 0; x < header.width(); ++x) if (buf[ offset + (x / 8) ] & (128 >> (x % 8))) { pixbuf[ x ] = (int)(pixbuf[ x ]) + (1 << i); } } uchar *p = img.scanLine(y); if (!p) { qWarning() << "Failed to get scanline for" << y << "might be out of bounds"; } for (int x = 0; x < header.width(); ++x) { p[ x ] = pixbuf[ x ]; } } // Read the palette for (int i = 0; i < 16; ++i) { img.setColor(i, header.ColorMap.color(i)); } } static void readImage8(QImage &img, QDataStream &s, const PCXHEADER &header) { QByteArray buf(header.BytesPerLine, 0); img = QImage(header.width(), header.height(), QImage::Format_Indexed8); img.setColorCount(256); if (img.isNull()) { qWarning() << "Failed to allocate image, invalid dimensions?" << QSize(header.width(), header.height()); return; } for (int y = 0; y < header.height(); ++y) { if (s.atEnd()) { img = QImage(); return; } readLine(s, buf, header); uchar *p = img.scanLine(y); if (!p) return; unsigned int bpl = qMin(header.BytesPerLine, (quint16)header.width()); for (unsigned int x = 0; x < bpl; ++x) { p[ x ] = buf[ x ]; } } quint8 flag; s >> flag; // qDebug() << "Palette Flag: " << flag; if (flag == 12 && (header.Version == 5 || header.Version == 2)) { // Read the palette quint8 r, g, b; for (int i = 0; i < 256; ++i) { s >> r >> g >> b; img.setColor(i, qRgb(r, g, b)); } } } static void readImage24(QImage &img, QDataStream &s, const PCXHEADER &header) { QByteArray r_buf(header.BytesPerLine, 0); QByteArray g_buf(header.BytesPerLine, 0); QByteArray b_buf(header.BytesPerLine, 0); img = QImage(header.width(), header.height(), QImage::Format_RGB32); if (img.isNull()) { qWarning() << "Failed to allocate image, invalid dimensions?" << QSize(header.width(), header.height()); return; } for (int y = 0; y < header.height(); ++y) { if (s.atEnd()) { img = QImage(); return; } readLine(s, r_buf, header); readLine(s, g_buf, header); readLine(s, b_buf, header); uint *p = (uint *)img.scanLine(y); for (int x = 0; x < header.width(); ++x) { p[ x ] = qRgb(r_buf[ x ], g_buf[ x ], b_buf[ x ]); } } } static void writeLine(QDataStream &s, QByteArray &buf) { quint32 i = 0; quint32 size = buf.size(); quint8 count, data; char byte; while (i < size) { count = 1; byte = buf[ i++ ]; while ((i < size) && (byte == buf[ i ]) && (count < 63)) { ++i; ++count; } data = byte; if (count > 1 || data >= 0xc0) { count |= 0xc0; s << count; } s << data; } } static void writeImage1(QImage &img, QDataStream &s, PCXHEADER &header) { img = img.convertToFormat(QImage::Format_Mono); header.Bpp = 1; header.NPlanes = 1; header.BytesPerLine = img.bytesPerLine(); s << header; QByteArray buf(header.BytesPerLine, 0); for (int y = 0; y < header.height(); ++y) { quint8 *p = img.scanLine(y); // Invert as QImage uses reverse palette for monochrome images? for (int i = 0; i < header.BytesPerLine; ++i) { buf[ i ] = ~p[ i ]; } writeLine(s, buf); } } static void writeImage4(QImage &img, QDataStream &s, PCXHEADER &header) { header.Bpp = 1; header.NPlanes = 4; header.BytesPerLine = header.width() / 8; for (int i = 0; i < 16; ++i) { header.ColorMap.setColor(i, img.color(i)); } s << header; QByteArray buf[ 4 ]; for (int i = 0; i < 4; ++i) { buf[ i ].resize(header.BytesPerLine); } for (int y = 0; y < header.height(); ++y) { quint8 *p = img.scanLine(y); for (int i = 0; i < 4; ++i) { buf[ i ].fill(0); } for (int x = 0; x < header.width(); ++x) { for (int i = 0; i < 4; ++i) if (*(p + x) & (1 << i)) { buf[ i ][ x / 8 ] = (int)(buf[ i ][ x / 8 ]) | 1 << (7 - x % 8); } } for (int i = 0; i < 4; ++i) { writeLine(s, buf[ i ]); } } } static void writeImage8(QImage &img, QDataStream &s, PCXHEADER &header) { header.Bpp = 8; header.NPlanes = 1; header.BytesPerLine = img.bytesPerLine(); s << header; QByteArray buf(header.BytesPerLine, 0); for (int y = 0; y < header.height(); ++y) { quint8 *p = img.scanLine(y); for (int i = 0; i < header.BytesPerLine; ++i) { buf[ i ] = p[ i ]; } writeLine(s, buf); } // Write palette flag quint8 byte = 12; s << byte; // Write palette for (int i = 0; i < 256; ++i) { s << RGB::from(img.color(i)); } } static void writeImage24(QImage &img, QDataStream &s, PCXHEADER &header) { header.Bpp = 8; header.NPlanes = 3; header.BytesPerLine = header.width(); s << header; QByteArray r_buf(header.width(), 0); QByteArray g_buf(header.width(), 0); QByteArray b_buf(header.width(), 0); for (int y = 0; y < header.height(); ++y) { uint *p = (uint *)img.scanLine(y); for (int x = 0; x < header.width(); ++x) { QRgb rgb = *p++; r_buf[ x ] = qRed(rgb); g_buf[ x ] = qGreen(rgb); b_buf[ x ] = qBlue(rgb); } writeLine(s, r_buf); writeLine(s, g_buf); writeLine(s, b_buf); } } PCXHandler::PCXHandler() { } bool PCXHandler::canRead() const { if (canRead(device())) { setFormat("pcx"); return true; } return false; } bool PCXHandler::read(QImage *outImage) { QDataStream s(device()); s.setByteOrder(QDataStream::LittleEndian); if (s.device()->size() < 128) { return false; } PCXHEADER header; s >> header; if (header.Manufacturer != 10 || s.atEnd()) { return false; } // int w = header.width(); // int h = header.height(); // qDebug() << "Manufacturer: " << header.Manufacturer; // qDebug() << "Version: " << header.Version; // qDebug() << "Encoding: " << header.Encoding; // qDebug() << "Bpp: " << header.Bpp; // qDebug() << "Width: " << w; // qDebug() << "Height: " << h; // qDebug() << "Window: " << header.XMin << "," << header.XMax << "," // << header.YMin << "," << header.YMax << endl; // qDebug() << "BytesPerLine: " << header.BytesPerLine; // qDebug() << "NPlanes: " << header.NPlanes; QImage img; if (header.Bpp == 1 && header.NPlanes == 1) { readImage1(img, s, header); } else if (header.Bpp == 1 && header.NPlanes == 4) { readImage4(img, s, header); } else if (header.Bpp == 8 && header.NPlanes == 1) { readImage8(img, s, header); } else if (header.Bpp == 8 && header.NPlanes == 3) { readImage24(img, s, header); } // qDebug() << "Image Bytes: " << img.numBytes(); // qDebug() << "Image Bytes Per Line: " << img.bytesPerLine(); // qDebug() << "Image Depth: " << img.depth(); if (!img.isNull()) { *outImage = img; return true; } else { return false; } } bool PCXHandler::write(const QImage &image) { QDataStream s(device()); s.setByteOrder(QDataStream::LittleEndian); QImage img = image; int w = img.width(); int h = img.height(); // qDebug() << "Width: " << w; // qDebug() << "Height: " << h; // qDebug() << "Depth: " << img.depth(); // qDebug() << "BytesPerLine: " << img.bytesPerLine(); // qDebug() << "Color Count: " << img.colorCount(); PCXHEADER header; header.Manufacturer = 10; header.Version = 5; header.Encoding = 1; header.XMin = 0; header.YMin = 0; header.XMax = w - 1; header.YMax = h - 1; header.HDpi = 300; header.YDpi = 300; header.Reserved = 0; header.PaletteInfo = 1; if (img.depth() == 1) { writeImage1(img, s, header); } else if (img.depth() == 8 && img.colorCount() <= 16) { writeImage4(img, s, header); } else if (img.depth() == 8) { writeImage8(img, s, header); } else if (img.depth() == 32) { writeImage24(img, s, header); } return true; } bool PCXHandler::canRead(QIODevice *device) { if (!device) { qWarning("PCXHandler::canRead() called with no device"); return false; } qint64 oldPos = device->pos(); char head[1]; qint64 readBytes = device->read(head, sizeof(head)); if (readBytes != sizeof(head)) { if (device->isSequential()) { while (readBytes > 0) { device->ungetChar(head[readBytes-- - 1]); } } else { device->seek(oldPos); } return false; } if (device->isSequential()) { while (readBytes > 0) { device->ungetChar(head[readBytes-- - 1]); } } else { device->seek(oldPos); } return qstrncmp(head, "\012", 1) == 0; } QImageIOPlugin::Capabilities PCXPlugin::capabilities(QIODevice *device, const QByteArray &format) const { if (format == "pcx") { return Capabilities(CanRead | CanWrite); } if (!format.isEmpty()) { return {}; } if (!device->isOpen()) { return {}; } Capabilities cap; if (device->isReadable() && PCXHandler::canRead(device)) { cap |= CanRead; } if (device->isWritable()) { cap |= CanWrite; } return cap; } QImageIOHandler *PCXPlugin::create(QIODevice *device, const QByteArray &format) const { QImageIOHandler *handler = new PCXHandler; handler->setDevice(device); handler->setFormat(format); return handler; }